Dilatometric model for determining the formation of austenite during continuous heating in medium carbon steel


A model was developed to predict the formation of austenite and dilatometric behavior during continuous heating in AISI 1045 steel, which has an initial microstructure composed of ferrite and pearlite. The model is proposed in two parts based on the heating rate and steel behavior to estimate the volume fraction of austenite during continuous heating. The first part of the transformation model is based on the diffusive model from Johnson–Mehl–Avrami–Kolmogorov at a heating rate interval of 0.083–0.383 °C s−1. The kinetic parameters k and n of the Avrami equation were considered to be dependent on the heating rate. In the second part of the model, the non-isothermal transformation rate model from Johnson–Mehl–Avrami–Kolmogorov was used for a heating rate interval of 0.383–1 °C s−1. The dilatometric behavior before and after austenite formation was associated with the instantaneous coefficient of thermal expansion for each phase or microconstituent present in the steel and during transformation, which was estimated using the volume fraction of austenite and a phase mixing rule. The dilatometric model considers a stage for homogenization of carbon into austenite based on an exponential diffusive model. A dilatometric curve analysis technique was used to determine the kinetic parameters, the instantaneous coefficient of thermal expansion, and the critical temperatures of the AISI 1045 steel. Finally, the model was validated by comparing its predictions with the dilatation deformation obtained in an experiment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Krauss G. Steels: processing, structure, and performance, 2nd editon. Materials Park: ASM International; 2015. https://doi.org/10.1361/spsap2005p119.

    Book  Google Scholar 

  2. 2.

    Hernández-Morales B, Vázquez-Gómez O, López-Martínez E, et al. Effect of heating rate and silicon content on kinetics of austenite formation during continuous heating. Mater Sci Forum. 2014. https://doi.org/10.4028/www.scientific.net/MSF.783-786.771.

    Article  Google Scholar 

  3. 3.

    Vázquez-Gómez O, Barrera-Godínez JA, Vergara-Hernández HJ. Kinetic study of austenite formation during continuous heating of unalloyed ductile iron. Int J Min Met Mater. 2015. https://doi.org/10.1007/s12613-015-1039-5.

    Article  Google Scholar 

  4. 4.

    López-Martínez E, Vázquez-Gómez O, Vergara-Hernández HJ, et al. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels. Int J Min Met Mater. 2015. https://doi.org/10.1007/s12613-015-1198-4.

    Article  Google Scholar 

  5. 5.

    Pawłowski B. Determination of critical points of hypoeutectoid steels/wyznaczanie punktów krytycznych w stalach podeutektoidalnych. Arch Metall Mater. 2012a. https://doi.org/10.2478/v10172-012-0106-4.

    Article  Google Scholar 

  6. 6.

    Surm H, Kessler O, Hunkel O, et al. Modelling the ferrite/carbide → austenite transformation of hypoeutectoid and hypereutectoid steels. J Phys IV Fr. 2004. https://doi.org/10.1051/jp4:2004120012.

    Article  Google Scholar 

  7. 7.

    Dong H, Sun X, Cao W, Liu Z, et al. On the performance improvement of steels through M3 structure control. In: Advanced steels: the recent scenario in steel science and technology; 2011. https://doi.org/10.1007/978-3-642-17665-4_6.

  8. 8.

    Oryshchenko AS, Khlusova EI. High-strength steels: control of structure and properties. In: Advanced steels: the recent scenario in steel science and technology; 2011. https://doi.org/10.1007/978-3-642-17665-4_7.

  9. 9.

    Hsu TY, Xuejun J. Ultra-high strength steel treated by using quenching-partitioning-tempering process. In: Advanced steels: the recent scenario in steel science and technology; 2011. https://doi.org/10.1007/978-3-642-17665-4_8.

  10. 10.

    Gorni AA. Steel forming and heat treating handbook. São Vicente SP. http://www.gorni.eng.br/e/Gorni\_SFHTHandbook.pdf (2018). Accessed 30 Apr 2018.

  11. 11.

    Hougardy HP. Werkstoffkunde stahl band 1: grundlagen. Berlin: Springer; 1984. https://doi.org/10.1007/978-3-642-82091-5.

    Book  Google Scholar 

  12. 12.

    Kasatkin OG, Vinokur BB, Pilyushenko VL. Calculation models for determining the critical points of steel. Met Sci Heat Treat. 1984. https://doi.org/10.1007/BF00712859.

    Article  Google Scholar 

  13. 13.

    Dobrzański LA, Trzaska J. Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations. J Mater Process Technol. 2004. https://doi.org/10.1016/j.jmatprotec.2004.04.056.

    Article  Google Scholar 

  14. 14.

    Trzaska J, Dobrzański LA. Modelling of CCT diagrams for engineering and constructional steels. J Mater Process Technol. 2007. https://doi.org/10.1016/j.jmatprotec.2007.04.099.

    Article  Google Scholar 

  15. 15.

    Arjomandi M, Sadati SH, Khorsand H, et al. Austenite formation temperature prediction in steels using an artificial neural network. Defect Diffus Forum. 2008. https://doi.org/10.4028/www.scientific.net/DDF.273-276.335.

    Article  Google Scholar 

  16. 16.

    Pawłowski B. Critical points of hypoeutectoid steel-prediction of the pearlite dissolution finish temperature Ac1f. J Achiev Mater Manuf Eng. 2011;49:331–7.

    Google Scholar 

  17. 17.

    Trzaska J. Calculation of critical temperatures by empirical formulae. Arch Metall Mater. 2016. https://doi.org/10.1515/amm-2016-0167.

    Article  Google Scholar 

  18. 18.

    Hunkel M, Surm H, Steinbacher M. Dilatometry. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Amsterdam: Elsevier; 2018. p. 103–29. https://doi.org/10.1016/B978-0-444-64062-8.00019-X.

    Google Scholar 

  19. 19.

    Vázquez-Gómez O, Gallegos-Pérez AI, López-Martínez E, et al. Criteria for the dilatometric analysis to determine the transformation kinetics during continuous heating. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7449-7.

    Article  Google Scholar 

  20. 20.

    Rivolta R, Gerosa R, Tavasci F. The dilatometric technique for studying sigma phase precipitation kinetics in F55 steel grade. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6940-x.

    Article  Google Scholar 

  21. 21.

    Kawuloková M, Smetana B, Zlá S, et al. Study of equilibrium and nonequilibrium phase transformations temperatures of steel by thermal analysis methods. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-016-5780-4.

    Article  Google Scholar 

  22. 22.

    Grajcar A, Zalecki W, Skrzypczyk P, et al. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-014-4054-2.

    Article  Google Scholar 

  23. 23.

    Lee SJ, Lusk MT, Lee YK. Conversional model of transformation strain to phase fraction in low alloy steels. Acta Mater. 2007. https://doi.org/10.1016/j.actamat.2006.09.008.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lee SJ, Clarke KD, Van Tyne CJ. An on-heating dilation conversional model for austenite formation in hypoeutectoid steels. Metall Mater Trans A. 2010. https://doi.org/10.1007/s11661-010-0267-6.

    Article  Google Scholar 

  25. 25.

    Lee SJ, Clarke KD. A conversional model for austenite formation in hypereutectoid steels. Metall Mater Trans A. 2010. https://doi.org/10.1007/s11661-010-0418-9.

    Article  Google Scholar 

  26. 26.

    Caballero FG, Capdevila C, García de Andrés C. Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int. 2001. https://doi.org/10.2355/isijinternational.41.1093.

    Article  Google Scholar 

  27. 27.

    García de Andrés C, Caballero FG, Capdevila C, et al. Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Mater Charact. 2001. https://doi.org/10.1016/S1044-5803(02)00259-0.

    Article  Google Scholar 

  28. 28.

    Oliveira FLG, Andrade MS, Cota AB. Kinetics of austenite formation during continuous heating in a low carbon steel. Mater Charact. 2007. https://doi.org/10.1016/j.matchar.2006.04.027.

    Article  Google Scholar 

  29. 29.

    Tszeng TC, Shi G. A global optimization technique to identify overall transformation kinetics using dilatometry data-applications to austenitization of steels. Mater Sci Eng A. 2004. https://doi.org/10.1016/j.msea.2004.03.040.

    Article  Google Scholar 

  30. 30.

    Caballero FG, Capdevila C, García de Andrés C. Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure. J Mater Sci. 2002. https://doi.org/10.1023/A:1016579510723.

    Article  Google Scholar 

  31. 31.

    Surm H, Kessler O, Hoffmann F, et al. Modelling of austenitising with non-constant heating rate in hypereutectoid steels. Int J Microstruct Mater Prop. 2008. https://doi.org/10.1504/IJMMP.2008.016942.

    Article  Google Scholar 

  32. 32.

    Li H, Gai K, He L, et al. Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson–Mehl–Avrami equation. Mater Des. 2016a. https://doi.org/10.1016/j.matdes.2015.12.110.

    Article  Google Scholar 

  33. 33.

    Li N, Lin J, Balint DS, et al. Modelling of austenite formation during heating in boron steel hot stamping processes. J Mater Process Technol. 2016b. https://doi.org/10.1016/j.jmatprotec.2016.06.006.

    Article  Google Scholar 

  34. 34.

    Pawłowski B. Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels. J Achiev Mater Manuf Eng. 2012;54:185–93.

    Google Scholar 

  35. 35.

    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939. https://doi.org/10.1063/1.1750380.

    Article  Google Scholar 

  36. 36.

    Avrami M. Kinetics of phase change, II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940. https://doi.org/10.1063/1.1750631.

    Article  Google Scholar 

  37. 37.

    Avrami M. Granulation, phase change, and microstructure kinetics of phase change, III. J Chem Phys. 1941. https://doi.org/10.1063/1.1750872.

    Article  Google Scholar 

  38. 38.

    Vázquez-Gómez O, López-Martínez E, Gallegos-Pérez AI, et al. Kinetic study of the austenite decomposition during continuous cooling in a welding steel. Proc Third Pan Am Mater Congress. 2017. https://doi.org/10.1007/978-3-319-52132-9_74.

    Article  Google Scholar 

  39. 39.

    Cahn JW. Transformation kinetics during continuous cooling. Acta Metall. 1956. https://doi.org/10.1016/0001-6160(56)90158-4.

    Article  Google Scholar 

  40. 40.

    Ruitenberg G, Woldt E, Petford-Long AK. Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta. 2001. https://doi.org/10.1016/S0040-6031(01)00584-6.

    Article  Google Scholar 

  41. 41.

    Farjas J, Roura P. Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater. 2006. https://doi.org/10.1016/j.actamat.2006.07.037.

    Article  Google Scholar 

  42. 42.

    James JD, Spittle JA, Brown SGR, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol. 2001;12:R1–15.

    Article  CAS  Google Scholar 

  43. 43.

    Hawbolt EB, Chau B, Brimacombe JK. Kinetics of austenite-pearlite transformation in eutectoid carbon steel. Metall Trans A. 1983. https://doi.org/10.1007/BF02645550.

    Article  Google Scholar 

Download references


M. Herrejón-Escutia would like to thank the National Council of Science and Technology of Mexico (CONACYT) for the scholarship (No. 267206) received for his doctoral studies. The authors are grateful to SEP-CONACYT for the support received through grant CB-256843 and the use of equipment acquired with support for projects Nos. 235780, 271878 and 282357 of the National Laboratory SEDEAM.

Author information



Corresponding author

Correspondence to Octavio Vázquez-Gómez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrejón-Escutia, M., Solorio-Díaz, G., Vergara-Hernández, H.J. et al. Dilatometric model for determining the formation of austenite during continuous heating in medium carbon steel. J Therm Anal Calorim 137, 399–410 (2019). https://doi.org/10.1007/s10973-018-7936-x

Download citation


  • Dilatometric model
  • Continuous heating
  • Austenite formation
  • Instantaneous coefficient of thermal expansion
  • AISI 1045 steel