Kinetics of thermally activated processes in cordierite-based ceramics


Thermally activated processes in cordierite-based ceramics were investigated to determine the effect of the mechanical activation and the addition of TeO2 on kinetic and thermodynamic parameters of these processes. Using a combination of dilatometry and DTA measurements in the 100–1400 °C temperature range, it was established that both the mechanical activation and the addition of TeO2 have a significant effect on processes in cordierite-based ceramics. A combination of 5 mass% addition of TeO2 and mechanical activation for 40 min reduced the sintering temperature of cordierite ceramics to around 1100 °C. In addition, the analysis of DTA measurements of mechanically activated samples indicates that the mechanical activation leads to intensification of the cordierite formation through an increase in concentration of surface defects and an increase in grain contact surface in the initial powder.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Camerucci MA, Urretavizcaya G, Cavalieri AL. Sintering of cordierite based materials. Ceram Int. 2003;29:159–68.

    CAS  Article  Google Scholar 

  2. 2.

    Taruta S, Hayashi T, Kitajima K. Preparation of machinable cordierite/mica composite by low-temperature sintering. J Eur Ceram Soc. 2004;24:3149–54.

    CAS  Article  Google Scholar 

  3. 3.

    Camerucci MA, Urretavizcaya G, Cavalieri AL. Mechanical behavior of cordierite and cordierite-mullite materials evaluated by indentation techniques. J Eur Ceram Soc. 2001;21:1195–204.

    CAS  Article  Google Scholar 

  4. 4.

    Moftah El-Buaishi N, Jankovic-Castvan I, Jokic B, Veljovic Dj, Janackovic Dj, Petrovic R. Crystallization behavior and sintering of cordierite synthesized by an aqueous sol–gel route. Ceram Int. 2012;38:1835–41.

    Article  Google Scholar 

  5. 5.

    Obradović N, Filipović S, Đorđević N, Kosanović D, Pavlović VB, Olćan D, Đorđevoć A, Kachlik M, Maca K. Microstructural and electrical properties of cordierite-based ceramics obtained after two-step sintering technique. Sci Sinter. 2016;48:157–65.

    Article  Google Scholar 

  6. 6.

    Obradović N, Đorđević N, Peleš A, Filipović S, Mitrić M, Pavlović VB. The influence of compaction pressure on the density and electrical properties of cordierite-based ceramics. Sci Sinter. 2015;47:15–22.

    Article  Google Scholar 

  7. 7.

    Wang X-H, Deng X-Y, Bai H-L, Zhou H, Qu W-G, Li L-T. Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni–Cu–Zn ferrite. J Am Ceram Soc. 2006;89:438–43.

    CAS  Article  Google Scholar 

  8. 8.

    Obradović N, Filipović S, Đorđević N, Kosanović D, Marković S, Pavlović V, Olćan D, Đorđević A, Kachlick M, Maca K. Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics. Ceram Int. 2016;42:9887–98.

    Article  Google Scholar 

  9. 9.

    Obradović N, Đorđević N, Filipović S, Nikolić N, Kosanović D, Mitrić M, Marković S, Pavlović V. Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive. Powder Technol. 2012;218:157–61.

    Article  Google Scholar 

  10. 10.

    Yin T, Park JW, Xiong S. Physicochemical properties of nano fish bone prepared by wet media milling. LWT Food Sci Technol. 2015;64:367–73.

    CAS  Article  Google Scholar 

  11. 11.

    Nhi Truong DY, Kleinke H, Gascoin F. Preparation of pure Higher Manganese Silicides through wet ball milling and reactive sintering with enhanced thermoelectric properties. Intermetall. 2015;66:127–32.

    CAS  Article  Google Scholar 

  12. 12.

    Knickerbocker SH, Kumar AH, Herron LW. Cordierite glass-ceramics for multilayer ceramic packaging. Am Ceram Soc Bull. 1993;72:90–5.

    CAS  Google Scholar 

  13. 13.

    Senguttuvan TD, Kalsi HS, Sharda SK, Das BK. Sintering behavior of alumina rich cordierite porous ceramics. Mater Chem Phys. 2001;67:146–50.

    CAS  Article  Google Scholar 

  14. 14.

    Gass SE, Sandoval ML, Talou MH, Martinez AGT, Camerucci MA, Gregorová E, Pabst W. High temperature mechanical behavior of porous cordierite-based ceramic materials evaluated using 3-point bending. Proc Mater Sci. 2015;9:254–61.

    CAS  Article  Google Scholar 

  15. 15.

    Okada K, Isobe T, Katsumata K, Kameshima Y, Nakajima A, MacKenzie KJD. Porous ceramics mimicking nature—preparation and properties of microstructures with unidirectionally oriented pores. Sci Technol Adv Mater. 2011;12:690–701.

    Article  Google Scholar 

  16. 16.

    Pavlović VP, Stojanović BD, Pavlović VB, Živković LM, Ristić MM. Low temperature sintering of mechanically activated BaCO3–TiO2. Sci Sinter. 2002;34:73–7.

    Article  Google Scholar 

  17. 17.

    Obradović N, Filipović S, Pavlović VB, Maričić A, Mitrović N, Ristić MM. Sintering of mechanically activated magnesium-titanate and barium-zinc-titanate ceramics. Sci Sinter. 2011;43:145–51.

    Article  Google Scholar 

  18. 18.

    Tunç T, Demirkıran AŞ. The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite. Powder Technol. 2014;260:7–14.

    Article  Google Scholar 

  19. 19.

    Labus N, Vasiljević Z, Aleksić O, Luković M, Marković S, Pavlović V, Mentus S, Nikolić MV. Characterisation of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment. Sci Sinter. 2017;49:455–67.

    CAS  Article  Google Scholar 

  20. 20.

    Zdujuć M, Poleti D, Jovalekić Č, Karanović L. The evolution of structure induced by intensive milling in the system 2Bi2O3·3TiO2. J Non-Ctystall Sol. 2006;352:3058–68.

    Article  Google Scholar 

  21. 21.

    Tkačova K. Mechanical activation of minerals. Amsterdam: Elsevier; 1989. p. 49.

    Google Scholar 

  22. 22.

    Yangyun S, Brook R. Preparation of zirconia-toughened ceramics by reaction sintering. J Sci Sinter. 1985;17:35–47.

    Google Scholar 

  23. 23.

    Avvakumov EG. Mechanical methods of activation of chemical processes. Novosibirsk: Nauka Sib. Otb.; 1986. p. 95.

    Google Scholar 

  24. 24.

    Li X, Shih WH. Size effects in barium titanate particles and clusters. J Am Ceram Soc. 1997;80:2844–51.

    CAS  Article  Google Scholar 

  25. 25.

    Fotoohi B, Blackburn S. Effects of mechanochemical processing and doping of functional oxides on phase development in synthesis of cordierite. J Eur Ceram Soc. 2012;32:2267–72.

    CAS  Article  Google Scholar 

  26. 26.

    Luo L, Zhou H, Xu C. Microstructural development on sol-gel derived cordierite ceramics doped B2O3 and P2O5. Mater Sci Eng B. 2003;99:348–51.

    Article  Google Scholar 

  27. 27.

    Yalamac E, Akkurt S. Additive and intensive grinding effects on the synthesis of cordierite. Ceram Int. 2006;32:825–32.

    CAS  Article  Google Scholar 

  28. 28.

    Liu C, Liu L, Tan K, Zhang L, Tang K, Shi X. Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag. Ceram Int. 2016;42:734–42.

    CAS  Article  Google Scholar 

  29. 29.

    Đorđević N, Obradović N, Kosanović D, Mitrić M, Pavlović VP. Sintering of cordierite in the presence of MoO3 and crystallization analysis. Sci Sinter. 2014;46:307–13.

    Article  Google Scholar 

  30. 30.

    WebElements. Accessed October 2018.

  31. 31.

    Blagojevic V. ThermV v0.2.

  32. 32.

    Maca K, Pouchly V, Boccaccini AR. Sintering densification curve—a practical approach for its construction from dilatometric shrinkage data. Sci Sinter. 2008;40:117–22.

    CAS  Article  Google Scholar 

  33. 33.

    Filipovic S, Obradovic N, Djordjevic N, Kosanovic D, Markovic S, Mitric M, Pavlovic V. Uticaj mehanicke aktivacije na sistem MgO–Al2O3–SiO2 u prisustvu aditiva TeO2. Tehnika–Novi materijali. 2016;25:797–802.

    Article  Google Scholar 

  34. 34.

    Obradovic N, Labus N, Sreckovic T, Stevanovic S. Reaction sintering of the 2ZnO–TiO2 system. Sci Sinter. 2007;39:127–32.

    CAS  Article  Google Scholar 

  35. 35.

    Tucker MG, Keene DA, Dove MT. A detailed structural characterization of quartz on heating through the α–β phase transition. Mineral Mag. 2001;65:489–507.

    CAS  Article  Google Scholar 

  36. 36.


  37. 37.

    Obradović N, Đorđević N, Filipović S, Marković S, Kosanović D, Mitrić M, Pavlović V. Reaction kinetics of mechanically activated cordierite-based ceramics studied via DTA. J Therm Anal Calorim. 2016;124(2):667–73.

    Article  Google Scholar 

  38. 38.

    Kirsever D, Karakus N, Toplan N, Toplan HO. The cordierite formation in mechanically activated talc-kaoline-alumina-basalt-quartz ceramic system. Acta Phys Polonica A. 2014;127:1042–4.

    Article  Google Scholar 

  39. 39.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702.

    CAS  Article  Google Scholar 

  40. 40.

    Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81.

    CAS  Article  Google Scholar 

Download references


This investigation was supported by the Serbian Ministry of Education, Science and Technological Development, and it was conducted under the OI 172057 project. The authors acknowledge also the support of the Grant agency of Czech Republic under Grant No. 17-05620S and support of the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Author information



Corresponding author

Correspondence to Nina Obradović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obradović, N., Blagojević, V., Filipović, S. et al. Kinetics of thermally activated processes in cordierite-based ceramics. J Therm Anal Calorim 138, 2989–2998 (2019).

Download citation


  • Mechanical activation
  • DTA
  • Sintering kinetics
  • Cordierite
  • TeO2