Skip to main content
Log in

Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to the enhanced thermophysical specifications of nanofluids, such as thermal conductivity, these types of fluids are appropriate candidates for heat transfer fluids. Nanostructure dispersion in the base fluid increases the dynamic viscosity which affects fluid flow in thermal devices. In order to facilitate design of thermal devices, it is crucial to have accurate predictive models for thermophysical properties of nanofluids. Dimensions of nanoparticles, working temperature and the concentration of nano-sized particles in the fluid are among the most influential factors in predicting dynamic viscosity of nanofluids. In the present research, four LSSVM-based algorithms including GA-LSSVM, PSO-LSSVM, HGAPSO-LSSVM and ICA-LSSVM are employed to model the dynamic viscosity of Al2O3/water. Results revealed that the generated models are accurate tools to calculate the dynamic viscosity of the nanofluid on the basis of the mentioned variables. The highest obtained coefficient of correlation belongs to GA-LSSVM which is equal to 0.9871, while this value for PSO-LSSVM, HGAPSO-LSSVM, and ICA-LSSVM algorithms are 0.9855, 0.9855, and 0.9846, respectively. Another utilized criterion for evaluating model accuracy is MSE value. Results revealed that the MSE values for HGAPSO-LSSVM, GA-LSSVM, PSO-LSSVM, and ICA-LSSVM are 0.00854, 0.00855, 0.00896 and 0.00979, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia. 2017;109:417–24. https://doi.org/10.1016/J.EGYPRO.2017.03.044.

    Article  CAS  Google Scholar 

  2. Akbarianrad N, Mohammadian F, Alhuyi Nazari M, Rahbani Nobar B. Applications of nanotechnology in endodontic: a review. Nanomed J. 2018;5:121–6. https://doi.org/10.22038/NMJ.2018.005.0001.

    Article  CAS  Google Scholar 

  3. Mohammadi M, Mohammadi M, Shafii MB. Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid). J Heat Transf. 2012;134:014504. https://doi.org/10.1115/1.4004805.

    Article  CAS  Google Scholar 

  4. Aramesh M, Pourfayaz F, Kasaeian A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol Energy. 2017;157:869–79. https://doi.org/10.1016/J.SOLENER.2017.09.011.

    Article  CAS  Google Scholar 

  5. Haghighi Bardineh Y, Mohamadian F, Ahmadi MH, Akbarianrad N. Medical and dental applications of renewable energy systems. Int J Low Carbon Technol. 2018. https://doi.org/10.1093/ijlct/cty040.

    Article  Google Scholar 

  6. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2016.03.026.

    Article  CAS  Google Scholar 

  7. Leong KY, Saidur R, Mahlia TMI, Yau YH. Performance investigation of nanofluids as working fluid in a thermosyphon air preheater. Int Commun Heat Mass Transf. 2012;39:523–9. https://doi.org/10.1016/j.icheatmasstransfer.2012.01.014.

    Article  CAS  Google Scholar 

  8. Esfahani MR, Languri EM, Nunna MR. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. Int Commun Heat Mass Transf. 2016;76:308–15. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.006.

    Article  CAS  Google Scholar 

  9. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  10. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65. https://doi.org/10.1016/J.APPLTHERMALENG.2017.01.068.

    Article  CAS  Google Scholar 

  11. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8. https://doi.org/10.1016/j.rser.2018.04.042.

    Article  CAS  Google Scholar 

  12. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7035-z.

    Article  Google Scholar 

  13. Hemmat Esfe M, Abbasian Arani AA, Shafiei Badi R, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018;131:2381–93. https://doi.org/10.1007/s10973-017-6744-z.

    Article  CAS  Google Scholar 

  14. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126:1455–62. https://doi.org/10.1007/s10973-016-5548-x.

    Article  CAS  Google Scholar 

  15. Karimipour A, Alipour H, Ali Akbari O, Toghraie Semiromi D, Hemmat Esfe M. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian J Sci Technol. 2015. https://doi.org/10.17485/ijst/2015/v8i15/51707.

    Article  Google Scholar 

  16. Akbari OA, Safaei MR, Goodarzi M, Akbar NS, Zarringhalam M, Shabani GAS, et al. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Adv Powder Technol. 2016;27:2175–85. https://doi.org/10.1016/J.APT.2016.08.002.

    Article  CAS  Google Scholar 

  17. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Phys E Low Dimens Syst Nanostruct. 2017;86:68–75. https://doi.org/10.1016/J.PHYSE.2016.10.013.

    Article  CAS  Google Scholar 

  18. Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water-ethylene glycol (40%–60%) nano fluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12. https://doi.org/10.1016/j.molliq.2017.02.037.

    Article  CAS  Google Scholar 

  19. Ahmadi M-A, Ahmadi MH, Fahim Alavi M, Nazemzadegan MR, Ghasempour R, Shamshirband S. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. J Taiwan Inst Chem Eng. 2018;9:383–95. https://doi.org/10.1016/J.JTICE.2018.06.003.

    Article  Google Scholar 

  20. Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116:1314–25. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.09.133.

    Article  CAS  Google Scholar 

  21. Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018. https://doi.org/10.1016/j.molliq.2018.05.124.

    Article  Google Scholar 

  22. Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.06.003.

    Article  CAS  Google Scholar 

  23. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO—engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81. https://doi.org/10.1016/J.MOLLIQ.2017.05.121.

    Article  CAS  Google Scholar 

  24. Toghyani S, Ahmadi MH, Kasaeian A, Mohammadi AH. Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. Int J Ambient Energy. 2016;37:456–68. https://doi.org/10.1080/01430750.2014.986289.

    Article  CAS  Google Scholar 

  25. Ahmadi MH, Ahmadi MA, Sadatsakkak SA, Feidt M. Connectionist intelligent model estimates output power and torque of stirling engine. Renew Sustain Energy Rev. 2015;50:871–83. https://doi.org/10.1016/J.RSER.2015.04.185.

    Article  Google Scholar 

  26. Mohamadian F, Eftekhar L, Haghighi Bardineh Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid. Nanomed J. 2018;5:217–21. https://doi.org/10.22038/NMJ.2018.05.00005.

    Article  Google Scholar 

  27. Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT–SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437–47. https://doi.org/10.1007/s10973-017-6680-y.

    Article  CAS  Google Scholar 

  28. Esfe MH, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71. https://doi.org/10.1007/s10973-016-6002-9.

    Article  CAS  Google Scholar 

  29. Hemmat Esfe M, Saedodin S, Akbari M, Karimipour A, Afrand M, Wongwises S, et al. Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.04.006.

    Article  CAS  Google Scholar 

  30. Loni R, Kasaeian A, Shahverdi K, Askari Asli-Ardeh E, Ghobadian B, Ahmadi MH. ANN model to predict the performance of parabolic dish collector with tubular cavity receiver. Mech Ind. 2017;18:408. https://doi.org/10.1051/meca/2017016.

    Article  Google Scholar 

  31. Ahmadi MH, Ahmadi MA, Ashouri M, Razie Astaraei F, Ghasempour R, Aloui F. Prediction of performance of Stirling engine using least squares support machine technique. Mech Ind. 2016;17:506. https://doi.org/10.1051/meca/2015098.

    Article  CAS  Google Scholar 

  32. Ahmadi MH, Nazari MA, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018;541:154–64. https://doi.org/10.1016/j.colsurfa.2018.01.030.

    Article  CAS  Google Scholar 

  33. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least squares support vector machines. Singapore: World Scientific; 2002. https://doi.org/10.1142/5089.

    Book  Google Scholar 

  34. Ahmadi MA, Mahmoudi B. Development of robust model to estimate gas–oil interfacial tension using least square support vector machine: experimental and modeling study. J Supercrit Fluids. 2016;107:122–8. https://doi.org/10.1016/J.SUPFLU.2015.08.012.

    Article  CAS  Google Scholar 

  35. van Gestel T, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, et al. Benchmarking least squares support vector machine classifiers. Mach Learn. 2004;54:5–32. https://doi.org/10.1023/B:MACH.0000008082.80494.e0.

    Article  Google Scholar 

  36. Ahmadi MA, Ebadi M. Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel. 2014;117:1074–84. https://doi.org/10.1016/J.FUEL.2013.10.010.

    Article  CAS  Google Scholar 

  37. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  38. Pelckmans K, Suykens JAK, Gestel T Van, De Brabanter J, Lukas L, Hamers B, et al. LS-SVMlab: a MATLAB/C toolbox for least squares support vector machines. n.d.

  39. Ahmadi M-A, Bahadori A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel. 2015;153:276–83. https://doi.org/10.1016/J.FUEL.2015.02.094.

    Article  CAS  Google Scholar 

  40. Baghban A, Kardani MN, Habibzadeh S. Prediction viscosity of ionic liquids using a hybrid LSSVM and group contribution method. J Mol Liq. 2017;236:452–64. https://doi.org/10.1016/j.molliq.2017.04.019.

    Article  CAS  Google Scholar 

  41. Ahmadi MA, Zendehboudi S, James LA. Developing a robust proxy model of CO2 injection: coupling Box–Behnken design and a connectionist method. Fuel. 2018;215:904–14. https://doi.org/10.1016/j.fuel.2017.11.030.

    Article  CAS  Google Scholar 

  42. Ahmadi MA, Chen Z. Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum. 2018. https://doi.org/10.1016/j.petlm.2018.06.002.

    Article  Google Scholar 

  43. Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506. https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2007.02.004.

    Article  CAS  Google Scholar 

  44. Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2007.10.026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanizadeh, M., Ahmadi, M.A., Ahmadi, M.H. et al. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim 137, 307–316 (2019). https://doi.org/10.1007/s10973-018-7916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7916-1

Keywords

Navigation