Skip to main content
Log in

Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo–Christov heat flux with convective heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present article investigates the effect of second-order slip, chemical reaction and Soret and Dufour effects on MHD convective flow of an Oldroyd-B liquid toward a stretchy surface. Analysis of thermal relaxation time is made by using Cattaneo–Christov heat flux model. The effects of radiation and convective heating are also taken into account. The ordinary differential equations are retrieved by the help of suitable transformations of governing equations. The analytical solutions are observed by homotopy progress. The velocity, concentration and temperature field are analyzed for various pertinent parameters involved in the study. The graphical results of physical quantities of interest such as skin friction, local Nusselt number and local Sherwood number are presented. A comparative study with existing result indicates excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(A_1\) :

Relaxation time

\(A_2\) :

Retardation time

a :

Stretching rate \(({\mathrm{s}}^{-1})\)

Bi :

Biot number (–)

\(B_0\) :

Constant magnetic field \(({\mathrm{kg}}\,{\mathrm{s}}^{-2}\,{\mathrm{A}}^{-1})\)

c :

Concentration \(({\mathrm{kg}}\,{\mathrm{m}}^{-3}\))

\(c_{\mathrm{p}}\) :

Specific heat \(({\mathrm{J}}\,{\mathrm{kg}}^{-1}\,{\mathrm{K}}^{-1})\)

\(c_\infty\) :

Ambient concentration \(({\mathrm{kg}}\,{\mathrm{m}}^{-3}\))

\(c_{\mathrm{w}}\) :

Fluid wall concentration \(({\mathrm{kg}}\,{\mathrm{m}}^{-3}\))

\(C_{\mathrm{f}}\) :

Skin friction coefficient \((\frac{1+\alpha }{1+\beta }f^{{\prime}{\prime}}(0))\) (–)

Cr :

Chemical reaction parameter (–)

\(D_{\mathrm{m}}\) :

Diffusion coefficient \(({\mathrm{m}}^{2}\,{\mathrm{s}}^{-1})\)

\(D_{\mathrm{f}}\) :

Dufour number (–)

\(f(\eta )\) :

Velocity similarity function (–)

\(h_{\mathrm{f}}\) :

Convective heat transfer coefficient \(({\mathrm{W}}\,{\mathrm{m}}^{-1}\,{\mathrm{K}}^{-1})\)

k :

Thermal conductivity \(({\mathrm{W}}\,{\mathrm{m}}^{-1}\,{\mathrm{K}}^{-1})\)

\(k_{\mathrm{T}}\) :

First-order chemical reaction parameter (–)

L :

Auxiliary linear operator (–)

M :

Hartmann number (–)

N :

Nonlinear operator (–)

\(Nu_{\mathrm{x}}\) :

Nusselt number \((-(1+\frac{4}{3}R_{\mathrm{d}})\theta^{\prime}(0) )\) (–)

Pr :

Prandtl number (–)

\(q_{1}\) :

Heat flux \(({\mathrm{W}}\,{\mathrm{m}}^{-2})\)

R d :

Radiation constant (–)

Sc :

Schmidt number (–)

Sr :

Soret number (–)

\(Sh_{\mathrm{x}}\) :

Sherwood number \((-\phi^{\prime}(0))\) (–)

T :

Temperature (K)

\(T_\infty\) :

Ambient temperature (K)

\(T_{\mathrm{w}}\) :

Convective surface temperature (K)

uv :

Velocity components in (xy) directions \(({\mathrm{m}}\,{\mathrm{s}}^{-1})\)

\(u_{\mathrm{w}}\) :

Velocity of the sheet \(({\mathrm{m}}\,{\mathrm{s}}^{-1})\)

xy :

Cartesian coordinates (m)

\(\alpha\) :

Dimensionless relaxation time parameter (–)

\(\beta\) :

Dimensionless retardation time parameter (–)

\(\chi_{\mathrm{m}}\) :

Auxiliary parameter (–)

\(\epsilon_1\) :

Dimensionless first-order slip velocity parameter (–)

\(\epsilon_2\) :

Dimensionless second-order slip velocity parameter (–)

\(\phi (\eta )\) :

Concentration similarity function (–)

\(\gamma\) :

Dimensionless thermal relaxation time (–)

\(\eta\) :

Similarity parameter (–)

\(\lambda_1\) :

First-order slip velocity factor

\(\lambda_2\) :

Second-order slip velocity factor

\(\nu\) :

Kinematic viscosity \(({\mathrm{m}}^{2}\,{\mathrm{s}}^{-1})\)

\(\theta (\eta )\) :

Temperature similarity function \((-)\)

\(\rho\) :

Density \(({\mathrm{kg}}\,{\mathrm{m}}^{-3})\)

\(\sigma\) :

Electrical conductivity \(({\mathrm{S}}\,{\mathrm{m}})\)

\(\psi\) :

Stream function \(({\mathrm{m}}^{2}\,{\mathrm{s}}^{-1})\)

References

  1. Cattaneo C. Calore Sulla Conduzione. Del Atti Sem Mat Fis Univ Modena. 1948;3:83–101.

    Google Scholar 

  2. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  3. Hayat T, Imtiaz M, Alsaedi A, Almezal S. On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. J Magn Mater. 2016;401(1):296–303.

    Article  CAS  Google Scholar 

  4. Li J, Zheng L, Liu L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo–Christov heat flux effects. J Mol Liq. 2016;221:19–25.

    Article  CAS  Google Scholar 

  5. Imtiaz M, Alsaedi A, Shaq A, Hayat T. Impact of chemical reaction on third grade fluid flow with Cattaneo–Christov heat flux. J Mol Liq. 2017;229:501–7.

    Article  CAS  Google Scholar 

  6. Ashraf B, Hayat T, Alsaedi A, Shehzad SA. Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions. Results Phys. 2016;6:917–24.

    Article  Google Scholar 

  7. Reddy GK, Yarrakula K, Raju CS. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim. 2018;132(3):1995–2002.

    Article  CAS  Google Scholar 

  8. Rashidi MM, Abdul Hakeem AK, Vishnu Ganesh N, Ganga B, Sheikholeslami M, Momoniat E. Analytical and numerical studies on heat transfer of a nanofluid over a stretching/shrinking sheet with second-order slip flow model. Int J Mech Mater Eng. 2016;11:1.

    Article  Google Scholar 

  9. Zhu J, Zheng L, Zheng L, Zhang X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Appl Math Mech. 2015;36(9):1131–46.

    Article  Google Scholar 

  10. Vishnu Ganesh N, Ganga B, Abdul Hakeem AK, Saranya SC, Kalaivanan R. Hydromagnetic axisymmetric slip flow along a vertical stretching cylinder with convective boundary condition. St Petersb Polytech Univ J Phys Math. 2016;2:273–80.

    Google Scholar 

  11. Loganathan K, Sivasankaran S, Bhuvaneswari M, Rajan S. Dufour and Soret effects on MHD convection of Oldroyd-B liquid over stretching surface with chemical reaction and radiation using Cattaneo–Christov heat flux. In: IOP: Materials science and engineering. vol 390; 2018. p. 012077.

  12. Bhuvaneswari M, Sivasankaran S, Kim YJ. Lie group analysis of radiation natural convection flow over an inclined surface in a porous medium with internal heat generation. J Porous Media. 2012;15(12):1155–64.

    Article  Google Scholar 

  13. Siddiqa S, Begum N, Hossain MA, Shoaib M, Reddy Gorla RS. Radiative heat transfer analysis of non-Newtonian dusty Casson fluid flow along a complex wavy surface. Numer Heat Transf. 2018;73(4):209–21.

    Article  CAS  Google Scholar 

  14. Freidoonimehr N, Rahimi AB. Brownian motion effect on heat transfer of a three-dimensional nanofluid flow over a stretched sheet with velocity slip. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7060-y.

    Article  Google Scholar 

  15. Golafshan B, Rahimi AB. Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7075-4.

    Article  Google Scholar 

  16. Ghasemi SE, Hatami M, Sarokolaie AK, Ganji D. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods. Physica E. 2015;70:14656.

    Article  Google Scholar 

  17. Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential. Stud Appl Math. 2007;119(4):297–354.

    Article  Google Scholar 

  18. Kuznetsov A, Nield D. Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci. 2014;77:1269.

    Article  Google Scholar 

  19. Eswaramoorthi S, Bhuvaneswari M, Sivasankaran S, Rajan S. Soret and Dufour effects on viscoelastic boundary layer flow over a stretching surface with convective boundary condition with radiation and chemical reaction. Sci Iran B. 2016;23(6):2575–86.

    Google Scholar 

  20. Sadeghy K, Hajibeygi H, Taghavi SM. Stagnation-point flow of upper-convected Maxwell fluids. Int J Non-linear Mech. 2006;41:1242.

    Article  Google Scholar 

  21. Mukhopadhyay S. Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett. 2012;29:054703.

    Article  Google Scholar 

  22. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T. Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B. 2016;25(1):014701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivasankaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, K., Sivasankaran, S., Bhuvaneswari, M. et al. Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo–Christov heat flux with convective heating. J Therm Anal Calorim 136, 401–409 (2019). https://doi.org/10.1007/s10973-018-7912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7912-5

Keywords

Navigation