Skip to main content
Log in

Thermodynamic functions of thorium–cerium mixed oxides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thorium–cerium mixed oxides (Th1−xCex)O2 (x = 0.25, 0.5, 0.75) were prepared by the citrate gel combustion technique. X-ray diffraction investigations of these samples revealed the formation of single-phase (fluorite) solid solutions. Heat capacity and enthalpy increments of these samples were measured by using a differential scanning calorimeter and a drop calorimeter (MHTC 96) in the temperature range 298–800 K and 523–1723 K, respectively. The values of heat capacity in the temperature range 523–1800 K were computed from the enthalpy increment data. With the help of these data, analytical expression for the heat capacity of (Th1−xCex)O2 (x = 0.25, 0.5, 0.75) as well as entropy and Gibb’s energy functions were obtained. The heat capacity values at 298 K pertaining to (Th1−xCex)O2 (x = 0.25, 0.5, 0.75) were found to be 64.92, 64.80, and 64.27 J K−1 mol−1, respectively. The thermodynamic functions are being reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Atomic Energy Agency, Thorium fuel cycle—Potential benefits and challenges, IAEA-TECDOC-1450, Vienna; 2005.

  2. Sinha RK, Kakodkar A. Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des. 2006;236:683–700.

    Article  CAS  Google Scholar 

  3. Naik YP, Ramarao GA, Banthiya A, Chaudhary D, Arora C. Synthesis and characterization of nano structured Th1−xCexO2 mixed oxide. J Therm Anal Calorim. 2012;107(1):105–10.

    Article  CAS  Google Scholar 

  4. Raj B, Vijayalakshmi M, Vasudeva Rao PR, Rao KBS. Challenges in materials research for sustainable nuclear energy. Mater Res Bull. 2008;33:327–37.

    Article  CAS  Google Scholar 

  5. Shein IR, Shein KL, Ivanovskii AL. Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles. J Nucl Mater. 2007;361:69–77.

    Article  CAS  Google Scholar 

  6. Osaka M, Takano S, Yamane Y. On a fast reactor cycle scheme that incorporates a thoria-based minor actinide-containing cermet fuel. Prog Nucl Energy. 2008;50:212–8.

    Article  CAS  Google Scholar 

  7. Lombardi C, Luzzi L, Padovani E, Vettraino F. Thoria and inert matrix fuel for a sustainable nuclear power. Prog Nucl Energy. 2008;50:944–53.

    Article  CAS  Google Scholar 

  8. Mathews MD, Ambekar BR, Tyagi AK. Bulk and lattice thermal expansion of Th1−xCexO2. J Nucl Mater. 2000;280:246–9.

    Article  CAS  Google Scholar 

  9. Mathews MD, Ambekar BR, Tyagi AK. Bulk thermal expansion studies of Th1−xCexO2 in the complete solid solution range. J Nucl Mater. 2001;288:83–5.

    Article  CAS  Google Scholar 

  10. Freshley MD, Mattys HM, General electric report HW-76559; 1962, p. 11.6.

  11. Muta H, Kawano T, Uno M, Ohishi Y, Kurosaki K, Yamanaka S. Lattice parameter and thermal conductivity of Th1−xMxO2−y (M = Y, La, Ce, Nd, Gd and U). J Nucl Mater. 2013;434:124–8.

    Article  CAS  Google Scholar 

  12. Shvareva TY, Alexandrov V, Asta M, Navrotsky A. Energetics of mixing in ThO2–CeO2 fluorite solid solutions. J. Nucl Mater. 2011;419:72–5.

    Article  CAS  Google Scholar 

  13. Sanjay Kumar D, Ananthasivan K, Venkata Krishnan R, Amirthapandian S, Dasgupta A. Bulk systhesis of nanocrystalline urania powders by citrate gel-combustion method. J Nucl Mater. 2016;468:178–93.

    Article  CAS  Google Scholar 

  14. Certificate of Standard Reference Materials 720, Synthetic sapphire (Al2O3) was supplied along with High temperature Calorimeter procured. U.S. Department of Commerce, Washington, DC. https://wwws.nist.gov/srmors/certificates/720.pdf?CFID.

  15. Babu R, Kandan R, Jena HN, Govindan Kutty KV, Nagarajan K. Calorimetric investigations on cubic BaTiO3 and Ba0.9Nd0.1TiO3 systems. J Alloys Compd. 2010;506:565–8.

    Article  CAS  Google Scholar 

  16. Cullity BD. Elements of xray diffraction, Chapter 11. 2nd ed. Reading, MA: Addison Wesely Co.; 1978.

    Google Scholar 

  17. Venkata Krishnan R, Nagarajan K, Vasudeva Rao PR. Heat capacity measurements on BaThO3 and BaCeO3. J Nucl Mater. 2001;299:28–31.

    Article  CAS  Google Scholar 

  18. Kandan R, Babu R, Manikandan P, Venkata Krishnan R, Nagarajan K. Calorimetric measurements on (U,Th)O2 solid solution. J Nucl Mater. 2009;384:231–5.

    Article  CAS  Google Scholar 

  19. Bakker K, Cordfunke EHP, Conings RJM, Schram RPC. Critical evaluation of the thermal properties of ThO2 and Th1−yUyO2 and a survey of literature data on Th1−yPuyO2. J Nucl Mater. 1997;250:1–12.

    Article  CAS  Google Scholar 

  20. Kubaschewski O, Alcock CB. Metallurgical thermochemistry. London: Pergamon Press; 1974.

    Google Scholar 

  21. Shannon RD. Revised effective ionic Radii and systematic studies of inter atomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitheri Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, R., Balakrishnan, S., Venkata Krishnan, R. et al. Thermodynamic functions of thorium–cerium mixed oxides. J Therm Anal Calorim 136, 2421–2427 (2019). https://doi.org/10.1007/s10973-018-7902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7902-7

Keywords

Navigation