Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1861–1868 | Cite as

Improved thermogravimetric system for processing of oil sludge using HY zeolite catalyst

  • João M. R. Silva
  • Ellen K. L. Morais
  • Jéssica B. Silveira
  • Marcos H. R. Oliveira
  • Ana C. F. Coriolano
  • Valter J. FernandesJr.
  • Antonio S. AraujoEmail author


The oil sludge residue presents an aggregate of hydrocarbons, organic and inorganic impurities, and water. The microporous and mesoporous zeolites are considered promising catalysts for processing of petroleum residues generated in refining processes. The aim of this work was to study the degradation of petroleum sludge obtained from primary processing, with applications of an improved thermogravimetry system and HY zeolite, at specific temperature ranges and degradation times, in order to obtain light gases and distillate fuels. The NaY zeolite was synthesized under hydrothermal treatment of a gel containing sodium silicate, sodium aluminate, and water. The obtained solid material was filtered, dried and calcined, and then ion-exchanged with ammonium chloride and calcined in order to obtain its protonic acid form (HY). The samples’ characterization by TG/DTG, XRD, and SEM proved that the crystalline structure of the faujasite zeolite was obtained. The thermal and catalytic degradation of the petroleum sludge was performed with 1.0 g of sample containing 10% of HY zeolite in the temperatures of 100, 200, 300, 400, and 500 °C, varying the time from 0 to 60 min to each temperature, using an oven with temperature program system, adapted with a Shimadzu precision balance. The curves obtained with this system evidenced that the presence of HY zeolite improves the degradation of the residue, with decreasing of the activation energy for the processes, as determined using the Arrhenius model.


Oil sludge Petroleum residue HY zeolite Improved thermogravimetry 



The authors are grateful to the National Council for Scientific and Technological Development (CNPq), CAPES, and National Agency of Petroleum, Natural Gas and Biofuels (ANP—Brazil), for supporting the research.


  1. 1.
    Xu M, Liu H, Zhao H, Li W. Effect of oily sludge on the rheological characteristics of coke-water slurry. Fuel. 2014;116:261–6.CrossRefGoogle Scholar
  2. 2.
    Islam B. Petroleum sludge, its treatment and disposal: a review. Int J Chem Sci. 2015;13:1584–602.Google Scholar
  3. 3.
    Speight JG. The refinery of the future. 1st ed. London: William Andrew Imprint, Elsevier; 2010.Google Scholar
  4. 4.
    Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater. 2013;261:470–90.CrossRefGoogle Scholar
  5. 5.
    Al-Futaisi A, Jamrah A, Yaghi B, Taha R. Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. J Hazard Mater. 2007;141:557–64.CrossRefGoogle Scholar
  6. 6.
    Mokhtar NM, Omar R, Salleh MAM, Idris A. Characterization of sludge from the wastewater-treatment plant of a refinery. Int J Eng Technol. 2011;8:48–56.Google Scholar
  7. 7.
    Wang Z, Guo Q, Liu X, Cao C. Low temperature pyrolysis characteristics of oil sludge under various heating conditions. Energy Fuels. 2007;21:957–62.CrossRefGoogle Scholar
  8. 8.
    Ramaswamy B, Kar DD, De S. A study on recovery of oil from sludge containing oil using froth flotation. J Environ Manag. 2007;85:150–4.CrossRefGoogle Scholar
  9. 9.
    Avilachavez MA, Eustaquio-Rincon R, Reza J, Trejo A. Extraction of hydrocarbons from crude oil tank bottom sludges using supercritical ethane. Sep Sci Technol. 2007;42:2327–45.CrossRefGoogle Scholar
  10. 10.
    Liu W, Luo Y, Teng Y, Li Z, Christie P. Prepared bed bioremediation of oily sludge in an oilfield in northern China. J Hazard Mater. 2009;161:479–84.CrossRefGoogle Scholar
  11. 11.
    Araujo AS, Coriolano ACF, Bandeira RAF, Delgado RCOB. Preparation and compressive strength evaluation of concrete containing oil sludge as additive. Mater Sci Forum. 2018;930:148–52.CrossRefGoogle Scholar
  12. 12.
    Barnetoa AG, Moltób J, Arizaa J, Conesab JA. Thermogravimetric monitoring of oil refinery sludge. J Anal Appl Pyrol. 2014;105:8–13.CrossRefGoogle Scholar
  13. 13.
    Karacan O, Kök M. Pyrolysis analysis of crude oils and their fractions. Energy Fuels. 1997;11:385–91.CrossRefGoogle Scholar
  14. 14.
    Castro KKV, Figueiredo AL, Gondim AD, Coriolano ACF, Alves APM, Fernandes VJ Jr, Araujo AS. Pyrolysis of atmospheric residue of petroleum (ATR) using AlSBA-15 mesoporous material by TG and Py-GC/MS. J Therm Anal Calorim. 2014;117:953–9.CrossRefGoogle Scholar
  15. 15.
    Coriolano ACF, Oliveira AAA, Bandeira RAF, Fernandes VJ Jr, Araujo AS. Kinetic study of thermal and catalytic pyrolysis of Brazilian heavy crude oil over mesoporous Al-MCM-41 materials. J Therm Anal Calorim. 2015;119:2151–7.CrossRefGoogle Scholar
  16. 16.
    Coriolano ACF, Barbosa GFS, Alberto CKD, Delgado RCOB, Castro KKV, Araujo AS. Catalytic processing of atmospheric residue of petroleum over AlSBA-15 nanomaterials with different acidity. Pet Sci Technol. 2016;34:627–32.CrossRefGoogle Scholar
  17. 17.
    Kök M. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.CrossRefGoogle Scholar
  18. 18.
    Kök M, Acar A. Kinetics of crude oil combustion. J Therm Anal Calorim. 2006;83:445–9.CrossRefGoogle Scholar
  19. 19.
    Kök M. Thermo-oxidative reactions of crude oils. J Therm Anal Calorim. 2011;105:411–4.CrossRefGoogle Scholar
  20. 20.
    Rodrigues MGF, Barbosa AS, Coriolano ACF, Silva EFB, Araujo AS. Evaluation of the acid properties of aluminossilicate MCM-22 material synthesized under static conditions. Mater Sci Pol. 2015;33:131–6.CrossRefGoogle Scholar
  21. 21.
    Sharma S, Ghoshal AK. Study of kinetics of co-pyrolysis of coal and waste LDPE blends under argon atmosphere. Fuel. 2010;89:3943–51.CrossRefGoogle Scholar
  22. 22.
    Lu GQ, Do DD. Comparison of structural models for high-ash char gasification. Carbon. 1994;32:247–63.CrossRefGoogle Scholar
  23. 23.
    Xu C, Hu S, Xiang J, Yang H, Sun L, Su S, Wang B, Chen Q, He L. Kinetic models comparison for steam gasification of coal/biomass blend chars. Bioresour Technol. 2014;2014(171):253–9.CrossRefGoogle Scholar
  24. 24.
    Murugan P, Murugan P, Mahinpey N, Mani T, Freitag N. Pyrolysis and combustion kinetics of Fosterton oil using thermogravimetric analysis. Fuel. 2009;88:1708–13.CrossRefGoogle Scholar
  25. 25.
    Syed S, Qudaih R, Talab I, Janajreh I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel. 2011;90:1631–7.CrossRefGoogle Scholar
  26. 26.
    Jaber JO, Probert SD. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Process Technol. 2000;63:57–70.CrossRefGoogle Scholar
  27. 27.
    Kantarelis E, Yang W, Blasiak W, Forsgren C, Zabaniotou A. Thermochemical treatment of E-waste from small household appliances using highly pre-heated nitrogen-thermogravimetric investigation and pyrolysis kinetics. Appl Energy. 2011;88:922–9.CrossRefGoogle Scholar
  28. 28.
    Shao J, Yan R, Chen H, Yang H, Lee DH. Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Process Technol. 2010;91:1113–8.CrossRefGoogle Scholar
  29. 29.
    Treacy MMJ, Higgins JB. Collection of simulated XRD powder patterns for zeolites. 4th revised ed. Amsterdam: Elsevier; 2001. p. 586.Google Scholar
  30. 30.
    Coriolano ACF, Barbosa GFS, Silveira JB, Freitas ICS, Fernandes VJ Jr, Araujo AS. An improved gravimetric method applied to co-processing of polyethylene terephtalate and petroleum blend using HY zeolite as catalyst. Pet Sci Technol. 2017;35:845–50.CrossRefGoogle Scholar
  31. 31.
    Silva JMR, Oliveira MHR, Nosman T, Coriolano ACF, Fernandes GJT, Fernandes VJ, Araujo AS. Catalytic distillation of an atmospheric petroleum resid using HZSM-5 and HY zeolites. Pet Sci Technol. 2017;19:1938–43.CrossRefGoogle Scholar
  32. 32.
    Alade OS, Sasaki K, Sugai Y, Konadu KT, Ansah EO, Ademodi B, Ueda R. Kinetics of thermal degradation of a Japanese oil sand. Egypt J Pet. 2018. (in press).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • João M. R. Silva
    • 1
  • Ellen K. L. Morais
    • 1
  • Jéssica B. Silveira
    • 2
  • Marcos H. R. Oliveira
    • 2
  • Ana C. F. Coriolano
    • 2
  • Valter J. FernandesJr.
    • 1
  • Antonio S. Araujo
    • 1
    Email author
  1. 1.Institute of ChemistryFederal University of Rio Grande do NorteNatalBrazil
  2. 2.School of Engineering and Technology InformationLaureate International University, Potiguar UniversityNatalBrazil

Personalised recommendations