Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1711–1721 | Cite as

Interactions of tobacco shred and other tobacco-based materials during co-pyrolysis and co-combustion

  • Yaping Zhang
  • Qing He
  • Yun Cao
  • Sui Bao
  • Shun Zhou
  • Zhenfeng Tian
  • Xiaofeng WangEmail author
  • Xiaomeng Peng
  • Xiaoyu Zhang
  • Dongliang Zhu
  • Shike She


The interactions of tobacco shred with other tobacco-based materials, like expanded cut tobacco, cut reconstituted tobacco and expanded cut stem during co-pyrolysis and co-combustion, were investigated using thermogravimetric analyzer. The results illustrated that the interactions barely existed during the co-pyrolysis, but promoted the combustion during the co-combustion process of all binary mixtures. Oxidative decompositions of solid char for all binary mixtures were promoted by the interactions during the co-combustion process. The activation energy distributions, which were obtained by the Kissinger–Akahira–Sunose method from the TG data, well explained how the interactions influenced the combustion of the binary mixtures. For further understanding the effects of interactions on the combustion behaviors of the mixed materials, the release characteristics of heat, smoke, CO and CO2 were determined by the cone calorimeter tests. Results demonstrated that the interactions among the binary mixtures enhanced the HRR rates and THR values, but reduced the smoke production rates, the amounts of total smoke production and the CO/CO2 ratio. Thus, it could be concluded that the health harm of cigarette smoking can be reduced by blending these tobacco-based materials to some extent.


Thermogravimetric analysis Cone calorimeter Interaction Tobacco shred Tobacco-based materials 



The authors wish to express the great appreciation of the financial support from China Tobacco Anhui Industrial Corporation (No. 2017122).


  1. 1.
    Carmella SG, Hecht SS, Tso TC, et al. Roles of tobacco cellulose, sugars and chlorogenic acid as precursors to catechol in cigarette smoke. J Agric Food Chem. 1984;32:267–73.CrossRefGoogle Scholar
  2. 2.
    Schmeltz I, Wenger A, Hoffmann D, et al. Chemical studies on tobacco smoke. 53. Use of radioactive tobacco isolates for studying the formation of smoke components. J Agric Food Chem. 1978;26:234–9.CrossRefGoogle Scholar
  3. 3.
    Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68:153–207.CrossRefGoogle Scholar
  4. 4.
    Baker RR. Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Prog Energy Combust Sci. 2006;32(4):373–85.CrossRefGoogle Scholar
  5. 5.
    Halter HM, Ito TI. Effect of tobacco reconstitution and expansion processes on smoke composition. Recent Adv Tob Sci. 1978;32:3239–45.Google Scholar
  6. 6.
    Zhong W, Zhu C, Shu M, et al. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas, sp. ZUTSKD. Bioresour Technol. 2010;101(18):6935–41.CrossRefGoogle Scholar
  7. 7.
    Zhou S, Ning M, Xu Y, et al. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrol. 2013;100(3):223–9.CrossRefGoogle Scholar
  8. 8.
    Zhou S, Ning M, Xu Y, et al. Effects of melamine phosphate on the thermal decomposition and combustion behavior of reconstituted tobacco sheet. J Therm Anal Calorim. 2013;112(3):1269–76.CrossRefGoogle Scholar
  9. 9.
    Wang L, Wen Y, Sun D, et al. Study on the decrease of harmful substance in paper-process reconstituted tobacco sheet. Adv Mater Res. 2011;314–316:2338–43.Google Scholar
  10. 10.
    Theophilus EH, Pence DH, Meckley DR, et al. Toxicological evaluation of expanded shredded tobacco stems. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2004;42(4):631–9.CrossRefGoogle Scholar
  11. 11.
    Green C, Schumacher J, Rodgman A. The expansion of tobacco and its effect on cigarette mainstream smoke properties. Beiträge Zur Tabakforschung. 2014;22(5):319–45.CrossRefGoogle Scholar
  12. 12.
    Ding M, Wei B, Zhang Z, et al. Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim. 2017;129(2):1–10.CrossRefGoogle Scholar
  13. 13.
    Djulančić N, Radojičić V, Srbinovska M. The influence of tobacco blend composition on carbon monoxide formation in mainstream cigarette smoke. Arch Ind Hyg Toxicol. 2013;64(1):107–13.Google Scholar
  14. 14.
    Wang C, Zhou S, Xu Y, et al. Combustion characters of cut reconstituted tobacco, expanded cut tobacco and expanded cut stem. Tob Sci Technol. 2013;1:5–9.Google Scholar
  15. 15.
    Yang Z, Zhang S, Liu L, et al. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor. Bioresour Technol. 2012;110(1):595–602.CrossRefGoogle Scholar
  16. 16.
    Qin G, Li B, Lu D, et al. Combustion property and mechanism of tobacco biomass. Tob Sci Technol. 2015;1:76–81.Google Scholar
  17. 17.
    Bockhorn H, Hornung A, Hornung U, et al. Modelling of isothermal and dynamic pyrolysis of plastics considering non-homogeneous temperature distribution and detailed degradation mechanism. J Anal Appl Pyrol. 1999;49(1–2):53–74.CrossRefGoogle Scholar
  18. 18.
    Association Korean Standards. Reaction-to-fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method).Google Scholar
  19. 19.
    Zhou S, Wang X, Ning M, et al. An insight into the roles of exogenous potassium salts on the thermal degradation of fuel-cured tobacco. J Anal Appl Pyrol. 2017;123:385–94.CrossRefGoogle Scholar
  20. 20.
    Zhou S, Wang X, He Q, et al. Thermal degradation and flammability of low ignition propensity cigarette paper. J Anal Appl Pyrol. 2014;110:24–33.CrossRefGoogle Scholar
  21. 21.
    Proniewicz LM, Paluszkiewicz C, Wesełucha-Birczyńska A, et al. FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct. 2001;596(1):163–9.CrossRefGoogle Scholar
  22. 22.
    Wang X, Chen Q, Xin L. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014;38(3):129–37.CrossRefGoogle Scholar
  23. 23.
    Łojewska J, Miśkowiec P, Łojewski T, et al. Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab. 2005;88(3):512–20.CrossRefGoogle Scholar
  24. 24.
    Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour Technol. 2013;131(3):40–6.CrossRefGoogle Scholar
  25. 25.
    Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93(2):637–40.CrossRefGoogle Scholar
  26. 26.
    Zhou S, Xu Y, Wang C, et al. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrol. 2011;91(1):232–40.CrossRefGoogle Scholar
  27. 27.
    Yıldız Z, Ceylan S. Pyrolysis of tobacco factory waste biomass. Journal of Thermal Analysis & Calorimetry. 2018;
  28. 28.
    Zhou H, Long Y, Meng A, et al. Interactions of three municipal solid waste components during co-pyrolysis. J Anal Appl Pyrol. 2015;111:265–71.CrossRefGoogle Scholar
  29. 29.
    Branca C, Blasi CD. Multi-step mechanism for the devolatilization of biomass fast pyrolysis oils. Ind Eng Chem Res. 2006;45:5891–9.CrossRefGoogle Scholar
  30. 30.
    Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  31. 31.
    Moriana R, Vilapana F, Karlsson S, et al. Improved thermomechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos Appl Sci Manuf. 2011;42:30–40.CrossRefGoogle Scholar
  32. 32.
    Manya JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Chem Res. 2003;42:434–41.CrossRefGoogle Scholar
  33. 33.
    Zhu X, Chen Z, Xiao B, et al. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim. 2015;119(3):2269–79.CrossRefGoogle Scholar
  34. 34.
    Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75(8):987–98.CrossRefGoogle Scholar
  35. 35.
    Yang H, Yan R, Chen H, et al. Liang, In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20(1):388–93.CrossRefGoogle Scholar
  36. 36.
    Valverde JL, Curbelo C, Mayo O, et al. Pyrolysis kinetics of tobacco dust. Chem Eng Res Des. 2000;78(6):921–4.CrossRefGoogle Scholar
  37. 37.
    Wang W, Wang Y, Yang L, et al. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim Acta. 2005;437(1):7–11.CrossRefGoogle Scholar
  38. 38.
    Yu L, Wang S, Jiang X, et al. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611–7.CrossRefGoogle Scholar
  39. 39.
    Chao M, Li W, Wang X. Influence of antioxidant on the thermal-oxidative degradation behavior and oxidation stability of synthetic ester. Thermochim Acta. 2014;591:16–21.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  41. 41.
    Schartel B, Bartholmai M, Knoll U. Some comments on the use of cone calorimeter data. Polym Degrad Stab. 2005;88(3):540–7.CrossRefGoogle Scholar
  42. 42.
    Fateh T, Rogaume T, Luche J, et al. Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus. J Anal Appl Pyrol. 2014;107(6):87–100.CrossRefGoogle Scholar
  43. 43.
    Petrella RV. The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci. 1994;12(1):14–43.CrossRefGoogle Scholar
  44. 44.
    Ferge T, Maguhn J, Hafner K, et al. On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor. Environ Sci Technol. 2005;39(6):1393.CrossRefGoogle Scholar
  45. 45.
    Lee BH, Kim HS, Kim S, et al. Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Constr Build Mater. 2011;25(7):3044–50.CrossRefGoogle Scholar
  46. 46.
    Wang P, Zhang J, Shao Q, et al. Physicochemical properties evolution of chars from palm kernel shell pyrolysis. J Therm Anal Calorim. 2018;133(3):1271–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory of Combustion and Pyrolysis Study of China National Tobacco CorporationChina Tobacco Anhui Tobacco Industrial Co., LtdHefeiPeople’s Republic of China
  2. 2.Anhui Key Laboratory of Tobacco ChemistryChina Tobacco Anhui Industrial Co., LtdHefeiPeople’s Republic of China

Personalised recommendations