Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1563–1574 | Cite as

Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates

  • Long YanEmail author
  • Zhisheng Xu
  • Xinghua Wang


A series of novel phosphorus, boron, and zinc-containing flame retardants (ZPEAs) were synthesized by the esterification of cyclic phosphate ester with different contents of zinc borate (ZnB), and then incorporated into amino resin to produce transparent fire-retardant coatings. The transparency analysis shows that the introduction of ZnB reduces the transparency of the ZPEAs and their resulting coatings which still exhibit high degree of transparency. Thermogravimetric analysis shows that the introduction of ZnB greatly enhances the thermal stability and residual mass of the coatings. The fire protection tests reveal that the ZPEAs impart the low mass loss, char index, and flame spread rating concomitant with a high intumescent factor to the resulting coatings applied on wood substrates. The cone calorimeter and smoke density tests show that the heat release and smoke production of the coatings gradually decrease with increasing ZnB content, which is due to the formation of a more compact and intumescent char against the heat and mass transfer during burning, as judged by digital photographs and scanning electron microscopy (SEM) images. Fourier transform infrared spectroscopy analysis confirms that the introduction of ZnB significantly enhances the quantity and quality of the intumescent char via the formation of more phosphorus-rich cross-linking char and aromatic char in the condensed phase, thus endowing the coatings with excellent flame-retardant and smoke suppression properties.


Zinc borate Transparent fire-retardant coatings Flame retardancy Smoke suppression Synergistic effect 



This work was supported by the National Natural Science Foundation of China (No. 51676210), the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3668), and the Project funded by China Postdoctoral Science Foundation (No. 2017M612587).


  1. 1.
    Nikolic M, Lawther JM, Sanadi AR. Use of nanofillers in wood coatings: a scientific review. J Coat Technol Res. 2015;12(3):445–61.CrossRefGoogle Scholar
  2. 2.
    Xiao Z, Liu S, Zhang Z, Mai C, Xie Y, Wang Q. Fire retardancy of an aqueous, intumescent, and translucent wood varnish based on guanylurea phosphate and melamine-urea-formaldehyde resin. Prog Org Coat. 2018;121:64–72.CrossRefGoogle Scholar
  3. 3.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289(6):499–511.CrossRefGoogle Scholar
  4. 4.
    Puri RG, Khanna AS. Intumescent coatings: a review on recent progress. J Coat Technol Res. 2017;14(1):1–20.CrossRefGoogle Scholar
  5. 5.
    Shi Y, Wang G. Influence of PEPA-containing polyether structure on fire protection of transparent fire-resistant coatings. J Coat Technol Res. 2016;13(3):457–68.CrossRefGoogle Scholar
  6. 6.
    Yan L, Xu Z, Wang X, Deng N, Chu Z. Synergistic effects of aluminum hydroxide on improving the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. J Coat Technol Res. 2018. Scholar
  7. 7.
    Alongi J, Han Z, Bourbigot S. Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci. 2015;51:28–73.CrossRefGoogle Scholar
  8. 8.
    Ma Z, Wang J, Chen S, Li X, Ma H. Synthesis and characterization of water borne intumescent fire retardant varnish based on phosphate resin acid cold cured amino resin. Prog Org Coat. 2012;74(3):608–14.CrossRefGoogle Scholar
  9. 9.
    Wang G, Huang Y, Hu X. Synthesis of a novel phosphorus-containing polymer and its application in amino intumescent fire resistant coating. Prog Org Coat. 2013;76(1):188–93.CrossRefGoogle Scholar
  10. 10.
    Shi Y, Wang G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl Surf Sci. 2016;385:453–63.CrossRefGoogle Scholar
  11. 11.
    Yan L, Xu Z, Wang X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat. 2018;122:07–118.Google Scholar
  12. 12.
    Yan L, Xu Z, Wang X. Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat. 2017;112:319–29.CrossRefGoogle Scholar
  13. 13.
    Xu Z, Chu Z, Yan L. Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent. J Therm Anal Calorim. 2018;133:1241–52.CrossRefGoogle Scholar
  14. 14.
    Wang B, Sheng H, Shi Y, Song L, Zhang Y, Hu Y, Hu W. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites. J Hazard Mater. 2016;314:260–9.CrossRefGoogle Scholar
  15. 15.
    Tang S, Qian L, Qiu Y, Dong Y. Synergistic flame-retardant effect and mechanisms of boron/phosphorus compounds on epoxy resins. Polym Adv Technol. 2018;29(1):641–8.CrossRefGoogle Scholar
  16. 16.
    Doğan M, Yılmaz A, Bayramlı E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites. Polym Degrad Stab. 2010;95(12):2584–8.CrossRefGoogle Scholar
  17. 17.
    Feng C, Zhang Y, Liang D, Liu S, Chi Z, Xu J. Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites. J Anal Appl Pyrol. 2015;115:224–32.CrossRefGoogle Scholar
  18. 18.
    Zhang F, Chen P, Wang Y, Li S. Smoke suppression and synergistic flame retardancy properties of zinc borate and diantimony trioxide in epoxy-based intumescent fire-retardant coating. J Therm Anal Calorim. 2016;123(2):1319–27.CrossRefGoogle Scholar
  19. 19.
    Chen X, Sun T, Cai X. The investigation of intumescent flame-retarded ABS using zinc borate as synergist. J Therm Anal Calorim. 2014;115(1):185–91.CrossRefGoogle Scholar
  20. 20.
    Wu Z, Shu W, Hu Y. Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFR system. J Appl Polym Sci. 2007;103(6):3667–74.CrossRefGoogle Scholar
  21. 21.
    Alwaan IM, Hassan A. Effects of zinc borate loading on thermal stability, flammability, crystallization properties of magnesium oxide/(90/10) mLLDPE/(NR/ENR-50) blends. Iran Polym J. 2014;23(4):277–87.CrossRefGoogle Scholar
  22. 22.
    Wu L, Baghdachi J. Functional polymer coatings: principles, methods, and applications. Hoboken: Wiley; 2015.CrossRefGoogle Scholar
  23. 23.
    Li H, Hu Z, Zhang S, Gu X, Wang H, Jiang P, Zhao Q. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog Org Coat. 2015;78:318–24.CrossRefGoogle Scholar
  24. 24.
    Köytepe S, Vural S, Seçkin T. Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials. Mater Res Bull. 2009;44(2):369–76.CrossRefGoogle Scholar
  25. 25.
    Gao X, Guo Y, Tian Y, Li S, Zhou S, Wang Z. Synthesis and characterization of polyurethane/zinc borate nanocomposites. Colloid Surf A. 2011;384(1–3):2–8.CrossRefGoogle Scholar
  26. 26.
    Larkin PJ. Infrared and Raman spectroscopy: principles and spectral interpretation. Oxford: Elsevier; 2011.Google Scholar
  27. 27.
    Tan Y, Shao Z, Yu L, Xu Y, Rao W, Chen L, Wang Y. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym Degrad Stab. 2016;131:62–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Disaster Prevention Science and Safety TechnologyCentral South UniversityChangshaChina
  2. 2.School of Civil EngineeringCentral South UniversityChangshaChina

Personalised recommendations