Abstract
In this study, a refrigeration cycle was simulated with different refrigerants in a petrochemical plant in Iran. Using Aspen HYSYS Software, necessary modifications were checked as much as possible and optimum values for important parameters affecting cycle of the optimized simulators in the Aspen HYSYS were found. Having found the most economical refrigeration cycle, financial expenses were reduced in the refrigeration cycle. Then, results from the simulation by Aspen HYSYS and Icarus software were compared with actual values of the petrochemical plant under study, and the most efficient and economical strategies to achieve the desired cycle were suggested. Energy consumption of the compressors was optimized by creating a Joule–Thomson balance between VLV-100 and the compressor power of the refrigeration cycle, which reduces the cost of utilities in the refrigeration cycle. The aim of this study is process optimization of the refrigeration cycle economically and also use of the environmental friendly refrigerants.
This is a preview of subscription content, access via your institution.







Abbreviations
- R-22:
-
Chlorodifluoromethane
- R-502:
-
R-502 is an azeotropic blend of R-22 and R-115
- R-134a:
-
1,1,1,2-Tetrafluoroethane
- Aspen HYSYS:
-
Hyprotech system
- Icarus:
-
Capital cost estimator
- PRSV:
-
Peng–Robinson Stryjek and vera
- PFD:
-
Process flow diagram
- ASME STEAM:
-
Water and steam
References
Anand S, Tyagi SK. Exergy analysis and experimental study of vapor compression refrigeration cycle. J Therm Anal Calorim. 2012;110:961–71.
Mahesh A, Kaushik SC. Solar adsorption refrigeration system using different mass of adsorbents. J Therm Anal Calorim. 2013;111:897–903.
Kaushik SC, Panwar NL, Reddy VS. Thermodynamic evaluation of heat recovery through a Canopus heat exchanger for vapor compression refrigeration(VCR) system. J Therm Anal Calorim. 2012;110:1493–9.
Anand S, Gupta A, Tyagi SK. Comparative thermodynamic analysis of a hybrid refrigeration system for promotion of cleaner technologies. J Therm Anal Calorim. 2014;117:1453–68.
Gupta A, Anand Y, Anand S, Tyagi SK. Thermodynamic Optimization and chemical exergy quantification for absorption-based refrigeration system. J Therm Anal Calorim. 2015;122:893–905.
Zolfaghari M, Pirouzfar V, Sakhaeinia H. Technical identification and economic evaluation of opportunities to recovery flare gas with various gas-processing plants. Energy. 2017;124:481–91.
Saha B, Koyama S, Kashiwagi T, Akisawa A, Chua T. Waste heat driven dualmode, multi-stage, multi-bed regenerative adsorption system. Int J Refrig. 2003;26:749–57.
American Society of Heating, Refrigerating and Air-Conditioning Engineers. www.ashrae.org/publications/page/158. Accessed 2016.
Samimi A. Micro-organisms of cooling tower problems and how to manage them. Int J Basic. 2013;4:705–15.
Parr P, Fred G, Taylor J. Incorporation of chromium in vegetation through root uptake and foliar absorption pathways. Environ Exp Bot. 1980;2:157–60.
Tomczyk J, Silberstein E, Whitman B, Johnson B. Refrigeration and air conditioning technology. 8th ed. Boston: Cengage Learning; 2017.
Stanford HW III. HVAC water chillers and cooling towers fundamentals, application, and operation. Boca Raton: CRC Press; 2011.
Etoumi A, Jobson M, Emtir M. Shortcut model for predicting refrigeration cycle performance. Chem Eng Trans. 2015;45:217–22.
Badr O, Callaghan PWO, Probert SD. Vapour compression refrigeration system. Appl Energy. 1990;36:303–31.
Siva V, Panwar N, Kaushik S. Exergetic analysis of a vapour compression refrigeration system with R134a, R143a, R152a, R404A, R407C, R410A, R502 and R507A. Clean Technol Environ Policy. 2012;14:47–53.
Lopis R, Cabello R, Torrela E. A dynamic model of a shell-and-tube condenser operating in a vapor compression refrigeration plant. Int J Therm Sci. 2008;47:926–34.
Wang FQ, Maidment GG, Missenden JF, Tozer RM. A novel special distributed method for dynamic refrigeration system simulation. Int J Refrig. 2007;30:887–903.
Gerstenmaier SF, Francova M, Kowalski M, Lisal M, Nezbeda I, Smith RW. Molecular-level computer simulation of a vapor-compression refrigeration cycle. Fluid Phase Equilib. 2007;259:195–200.
Zhang Y, Chen J, He J, Wu C. Comparison on the optimum performances of the irreversible Brayton refrigeration cycles with regeneration and non-regeneration. Appl Therm Eng. 2007;27:401–7.
Kang H, Choi K, Park Ch, Kim Y. Effects of accumulator heat exchangers on the performance of a refrigeration system. Int J Refrig. 2007;30:282–9.
Leducq D, Guilparta J, Trystram G. Non-linear predictive control of a vapor compression cycle. Int J Refrig. 2006;29:761–72.
Sarkar J, Bhattacharyya S. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs. Energy Convers Manag. 2007;48:803–8.
Jensen JB, Skogestad S. Control and optimal symposium on computer aided process engineering. (ES-CAPE); 2005.
Kim JH, Cho JM, Lee H, Lee JS, Kim MS. Circulation concentration of CO2/propane mixtures and the effect of their charge on the cooling performance in an air-conditioning system. Int J Refrig. 2007;30:43–9.
Rajapaksha L. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapor compression refrigeration. Energy Convers Manag. 2007;48:539–45.
Sarkar J, Bhattacharyya S, Ramgopal M. Optimization of critical CO2 heat pump cycle for simultaneous cooling and heating application. Int J Refrig. 2004;27:830–8.
Dossat RJ. Principles of refrigeration. New York: Wiley; 1961.
Seif K, Menna M, Elnabawy AO. Semi-empirical correlation for binary interaction parameters of the peng-robinson equation of state with the van der waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium. J Adv Res. 2013;4:137–45.
Jaubert JN, Privat R. Relationship between the binary interaction parameters (Kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: application to the definition of the PR2SRK model. Fluid Phase Equilib. 2010;295:26–37.
Geist JM, Lashmet PK. Miniature Joule–Thomson refrigeration system. Adv Cryog Eng. 1960;5:324–31.
Schoen M. The Joule–Thomson effect in confined fluids. Physica A. 1999;270:353–79.
Matin NS, Haghighi B. Calculation of the Joule–Thomson inversion curves from cubic equations of state. Fluid Phase Equilib. 2000;175:273–84.
Maric I. The Joule–Thomson effect in natural gas flow-rate measurements. Flow Meas Instrum. 2005;16:387–95.
Chacín A, Vázquez JM, Müller EA. Molecular simulation of the Joule–Thomson inversion curve of carbon dioxide. Fluid Phase Equilib. 1999;1999(165):147–55.
Fredrichkson K, Nellis G, Klein S. A design method for mixed gas Joule–Thomson refrigeration cryosurgical probes. Int J Refrig. 2006;29:700–15.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saleh, S., Pirouzfar, V. & Alihosseini, A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants. J Therm Anal Calorim 136, 1817–1830 (2019). https://doi.org/10.1007/s10973-018-7809-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-018-7809-3