Skip to main content
Log in

Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to decrease the energy consumptions in energy conversion devices, boiling heat transfer augmentation is one of the important research activities for the scientific community. In present study, the pool boiling heat transfer characteristics of Cu–TiO2 composite coating on copper surfaces are reported. A two-step electrodeposition technique is employed to develop the nanocomposite coatings on copper surfaces, where higher current densities are applied for a short period and then the deposition is continued with lower current density for longer period in the second step of electrochemical deposition. The layer deposited during the first step is fragile, which is stabilized during the second step of electrodeposition at lower current density for longer duration. The surface morphology properties like porosity, wettability, coating layer thickness are easily controlled by managing the electrodeposition parameters like electrolyte composition, deposition time and current density. The pool boiling experiments are performed on bare and composite-coated surfaces at atmospheric pressure with saturated DI water. The boiling performance of coated surfaces is compared with the bare (uncoated) surface. The maximum boiling heat transfer coefficient and critical heat flux on coated surfaces are achieved to be 151 kW m−2 K−1 and 1988 kW m−2, which are 185% and 86% higher than the bare copper surface, respectively. The enhancement in boiling performance is associated with several parameters like increase in porosity, presence of high-density nucleation sites, and improvement in surface wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kandlikar SG, Shoji M, Dhir VK. Handbook of phase change. Philadelphia: Taylor and Francis; 1999.

    Google Scholar 

  2. Teodori E, Moita AS, Moreira ALN. Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV. Int J Heat Mass Transf. 2013;66:261–70.

    Article  Google Scholar 

  3. Moita AS, Teodori E, Moreira ALN. Influence of surface topography in the boiling mechanisms. Int J Heat Fluid Flow. 2015;52:50–63.

    Article  Google Scholar 

  4. Birce D, Edidiong E, Marc C. Pool boiling enhancement with environmentally friendly surfactant additives. J Therm Anal Calorim. 2014;116:1387–94.

    Article  CAS  Google Scholar 

  5. Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130:2199–209.

    Article  CAS  Google Scholar 

  6. Patil CM, Kandlikar SG. Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling. Heat Transfer Eng. 2013;35:887–902.

    Article  CAS  Google Scholar 

  7. Machlouf AS, Tiginyanu I. Nanocoatings and ultra-thin films. Technologies and applications., A volume in Woodhead Publishing Series in metals and surface engineeringCambridge: Woodhead Publishing; 2011. ISBN 978-1-84569-812-6.

    Book  Google Scholar 

  8. Shin HC, Dong J, Liu M. Nanoporous structures prepared by an electrochemical deposition process. Adv Mater. 2003;15:1610–4.

    Article  CAS  Google Scholar 

  9. Gupta SK, Misra RD. An experimental investigation on flow boiling heat transfer enhancement using Cu–TiO2 nanocomposite coating on copper substrate. Exp Therm Fluid Sci. 2018;98:406–19.

    Article  CAS  Google Scholar 

  10. Anderson TM, Mudawar I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid. Trans ASME. 1989;111:752–9.

    Article  CAS  Google Scholar 

  11. You SM, Simon TW, Bar-Cohen A. A technique for enhancing boiling heat transfer with application to cooling of electronic equipment. IEEE Trans Compon Hybrids Manuf Technol. 1992;15(5):823–31.

    Article  Google Scholar 

  12. Memory SB, Sugiyama DC, Marto PJ. Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces—I. Single tubes. Int J Heat Mass Transf. 1995;38(8):1347–61.

    Article  CAS  Google Scholar 

  13. Golobic I, Ferjančič K. The role of enhanced coated surface in pool boiling CHF in FC-72. Heat Mass Transf. 2000;36(6):525–31.

    Article  CAS  Google Scholar 

  14. Chang JY, You SM. Enhanced boiling heat transfer from microporous surfaces: effects of a coating composition and method. Int J Heat Mass Transf. 1997;40(18):4449–60.

    Article  CAS  Google Scholar 

  15. Albertson CE. Boiling heat transfer surface and method. US Patent. 1977; 572:376.

  16. Kim JH. Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques. Ph.D. thesis, University of Texas at Arlington, TX, USA (2006).

  17. El-Genk MS, Ali AF. Enhanced nucleate boiling on copper micro-porous surfaces. Int J Multiphase Flow. 2010;36(10):780–92.

    Article  CAS  Google Scholar 

  18. Im Y, Dietz C, Lee SS, Joshi Y. Flower-like CuO nanostructures for enhanced boiling. Nanoscale Microscale Thermophys Eng. 2012;16(3):145–53.

    Article  CAS  Google Scholar 

  19. Ahn HS, Sathyamurthi V, Banerjee D. Pool boiling experiments on a nanostructured surface. IEEE Trans Compon Packag Technol. 2009;32:156–62.

    Article  CAS  Google Scholar 

  20. Patil CM, Santhanam KSV, Kandlikar SG. Development of a two-step electrodeposition process for enhancing pool boiling. Int J Heat Mass Transf. 2014;79:989–1001.

    Article  Google Scholar 

  21. Holman JP. Experimental methods for engineers. 7th ed. London: Tata McGraw Hill Education Private Limited; 2007.

    Google Scholar 

  22. Nikolic ND. Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zastita Mater. 2010;51:1970203.

    Google Scholar 

  23. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. ASME. 1952;74:969–76.

    CAS  Google Scholar 

  24. Das S, Kumar DS, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl Therm Eng. 2016;96:555–67.

    Article  CAS  Google Scholar 

  25. Webb R. The evolution of enhanced surface geometries for nucleate boiling. Heat Transf Eng. 1981;2:46–69.

    Article  Google Scholar 

  26. Betz AR, Xu J, Qiu H, Attinger D. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl Phys Lett. 2010;97:141909.

    Article  CAS  Google Scholar 

  27. Liu Y, Yao W, Wang Y, Moita A, Han Z, Ren L. Reversibly switchable wettability on aluminium substrate corresponding to different pH droplet and its corrosion resistance. Chem Eng J. 2016;303:565–74.

    Article  CAS  Google Scholar 

  28. Morshed AKMM, Paul TC, Khan J. Effect of Cu–Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl Therm Eng. 2013;51:1135–43.

    Article  CAS  Google Scholar 

  29. Dai X, Yang F, Fang R, Yemame T, Khan JA, Li C. Enhanced single- and two phase transport phenomena using flow separation in a micro gap with copper woven mesh coatings. Appl Therm Eng. 2013;54:281–8.

    Article  CAS  Google Scholar 

  30. Yang F, Dai X, Peles Y, Cheng P, Khan J, Li C. Flow boiling phenomena in a single annular flow regime in microchannels (I): characterization of flow boiling heat transfer. Int J Heat Mass Transf. 2014;68:703–15.

    Article  CAS  Google Scholar 

  31. Cooper MG, Lloyd AJ. The microlayer in nucleate pool boiling. Int J Heat Mass Transf. 1969;12:895–913.

    Article  CAS  Google Scholar 

  32. Chu KH, Enright R, Wang EN. Structured surfaces for enhanced pool boiling heat transfer. Appl Phys Lett. 2012;100(24):241603.

    Article  CAS  Google Scholar 

  33. Kwark SM, Kumar R, Moreno G, Yoo J, You SM. Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf. 2010;53:972–81.

    Article  CAS  Google Scholar 

  34. Bo S, Yi-Biao W, Kai C. Pool boiling heat transfer enhancement with copper nanowire arrays. Appl Therm Eng. 2015;75:115–21.

    Article  CAS  Google Scholar 

  35. Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng. 2017;113:1345–57.

    Article  CAS  Google Scholar 

  36. Gupta SK, Misra RD. Experimental study of pool boiling heat transfer on copper surfaces with Cu–Al2O3 nanocomposite coatings. Int Commun Heat Mass Transf. 2018;97:47–55.

    Article  CAS  Google Scholar 

  37. Gupta SK, Misra RD. An experimental investigation on pool boiling heat transfer enhancement using Cu–Al2O3 nano-composite coating. Exper Heat Transf. 2018;1:1–26. https://doi.org/10.1080/08916152.2018.1485785.

    Article  CAS  Google Scholar 

  38. Li G, Thomas B, Stubbins J. Modeling creep and fatigue of copper alloys. Metall Mater Trans A. 2000;31(10):2491–502.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology Mumbai, India, for providing FEG-SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim 136, 1781–1793 (2019). https://doi.org/10.1007/s10973-018-7805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7805-7

Keywords

Navigation