Skip to main content
Log in

Oxidation behavior of U-6 mass% Zr alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The oxidation behavior of U-6 mass% Zr alloy was studied by using thermogravimetric technique. Oxidation reaction was carried out by heating alloy sample in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics of oxidation reaction. Model-free isoconversional method was used to derive the kinetic parameters. A single-step oxidation reaction was observed. The completion of oxidation reaction was ascertained by constancy of sample mass with respect to time and temperature. It was observed that under the favorable conditions of temperature, time and concentration of oxygen (Vpm of O2) alloy sample underwent ignition also. Hence, dependence of inception of ignition reaction on concentration of oxygen (Vpm of O2) was also studied. The effective activation energy obtained using isoconversional method for U-6 mass% Zr alloy was found to be 85 ± 7 kJ mol−1 for ‘α’ = 0.1 to 0.8 (non-isothermal experiments). It was inferred that prolonged exposure of the alloy to oxygen at room temperature resulted in its surface oxidation. The products of oxidation reaction did not result in a protective coating on the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cathcart JV, Pawel RE, Petersen GF. High temperature oxidation of uranium alloys. Oak Ridge National Laboratory: Oak Ridge; 1974.

    Google Scholar 

  2. Barnartt S, Charles RG, Gulbransen EA. Oxidation of 50 weight per cent uranium-zirconium alloy. J Electrochem Soc. 1957;104(4):218–21.

    Article  CAS  Google Scholar 

  3. Matsui T, Yamada T, Ikai Y, Naito K. Oxidation of U-20 at.% Zr alloy in air at 423–1063 K. J Nucl Mater. 1993;199:143–8.

    Article  CAS  Google Scholar 

  4. Matsui T, Yamada T, Ikai Y. Oxidation of U-10 at.% Zr alloy in air at 423–1028 K. J Nucl Mater. 1994;210:172–7.

    Article  CAS  Google Scholar 

  5. Rao GAR, Venugopal V, Sood DD. Oxidation studies on U–Zr alloys. J Nucl Mater. 1994;209:161–8.

    Article  Google Scholar 

  6. Schnizlein JG, Baker L, Bingle JR, Bingle JD. The ignition of binary alloys of uranium. J Nucl Mater. 1966;20:39–47.

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Charles AW. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  8. Chetty KV, Radhakrishna J, Sayi YS, Balachander N, Venkataramana P, Natarajan PR. Radiochem Radioanal Lett. 1983;58:161–2.

    CAS  Google Scholar 

  9. Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG, Kumar A, Singh RP. Microstructural and thermophysical properties of U-6 mass% Zr alloy for fast reactor application. J Nucl Mater. 2012;427:1–11.

    Article  CAS  Google Scholar 

  10. Kutty TRG, Kaity S, Kumar A. Impression creep behaviour of U-6% Zr alloy: role of Microstructure. Procedia Eng. 2013;55:561–5.

    Article  CAS  Google Scholar 

  11. Brown M E, Dollimore D, Galwey A K. Comprehensive chemical kinetics. 22nd vol. 22. Amsterdam: Elsevier; 1988.

  12. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  13. Simon P. Isoconversional methods: fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  14. Jain A, Anthonysamy S. Oxidation of boron carbide powder. J Therm Anal Calorim. 2015;122:645–52.

    Article  CAS  Google Scholar 

  15. Vyazovkin S. An approach to the solution of the inverse kinetic problem in the case of complex process. Part 4. Chemical reaction complicated by diffusion. Thermochim Acta. 1993;223:201–6.

    Article  CAS  Google Scholar 

  16. Roberts AF. A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame. 1970;14:261–72.

    Article  CAS  Google Scholar 

  17. Williams FA. Combustion theory, Benjamin Cummings. Ohio: Menlo Park; 1985.

    Google Scholar 

  18. Nawada HP, Srirama Murti P, Seenivasan G, Anthonysamy S. Thermochim Acta. 1989;144:357–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. B. P. Reddy, Head, Pyrochemical & Materials Processing Division for providing U-6 mass% Zr alloy sample for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Sharma, B.K. & Manivannan, A. Oxidation behavior of U-6 mass% Zr alloy. J Therm Anal Calorim 136, 1285–1293 (2019). https://doi.org/10.1007/s10973-018-7779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7779-5

Keywords

Navigation