Skip to main content
Log in

Kinetic study of the multistep thermal behaviour of barium titanyl oxalate prepared via chemical precipitation method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study describes the physico-geometrical mechanism and overall kinetics for the multistep thermal dehydration of barium titanyl oxalate tetrahydrate (BTO). The thermal dehydration kinetics of BTO was studied at four different linear heating rates under non-isothermal conditions. The reaction kinetics was performed using differential scanning calorimetry (DSC) and the curves obtained were analysed using different isoconversional model-free equations and the values are found to be compatible with each other. The kinetic deconvolution principle is used for identifying the partially overlapped kinetic processes of the thermal dehydration of BTO, and it occurs in two stages. The overall reaction kinetics parameters calculated via kinetic deconvolution of the sample indicate the multistep nature of the process and the kinetic analysis of the non-isothermal data of this reaction model shows that the reaction is best described by Sestak–Berggren (m, n) empirical kinetic model. The prepared sample was identified and characterized by means of FT-IR, XRD, SEM, and TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Min C, Kim S, Lee C. Morphology of barium titanate particles produced by homogeneous precipitation. Bull Korean Chem Soc. 1997;18:600–3.

    CAS  Google Scholar 

  2. Pfaff G. Sol-gel synthesis of barium titanate powders of various compositions. J Mater Chem. 1992;2:591–4.

    Article  CAS  Google Scholar 

  3. Hoffmann T, Doll T, Fuenzalida VM. Fabrication of BaTiO3 microstructures by hydrothermal growth. J Electrochem Soc. 1997;144:292–3.

    Article  Google Scholar 

  4. Pechini MP. Barium titanium citrate, barium titanium and processes for producing same. Patent US 3231328. 1996.

  5. Kim JG, Ha JG, Lim TW, Park K. Preparation of porous BaTiO3-based ceramics by high-energy ball-milling process. Mater Lett. 2006;60:1505–8.

    Article  CAS  Google Scholar 

  6. Vinothini V, Singh P, Balasubramanian M. Synthesis of barium titanate nanopowder using polymeric precursor method. Ceram Int. 2006;32:99–103.

    Article  CAS  Google Scholar 

  7. Ghosh S, Dasgupta S, Sen A, Maiti HS. Synthesis of barium titanate nanopowder by a soft chemical process. Mater Lett. 2007;61:538–41.

    Article  CAS  Google Scholar 

  8. Jung YJ, Lim DY, Nho JS, Cho SB, Riman RE, Lee BW. Glycothermal synthesis and characterization of tetragonal barium titanate. J Cryst Growth. 2005;274:638–52.

    Article  CAS  Google Scholar 

  9. Ragulya AV, Vasylkiv OO, Skorokhod VV. Synthesis and sintering of nanocrystalline barium titanate powder under nonisothermal conditions. I. Control of dispersity of barium titanate during its synthesis from barium titanyl oxalate. Powder Metall Met Ceram. 1997;36:170–5.

    Article  CAS  Google Scholar 

  10. Bera J, Sarkar D. Formation of BaTiO3 from barium oxalate and TiO2. J Electroceram. 2003;11:131–7.

    Article  CAS  Google Scholar 

  11. Wada S, Narahara M, Hoshina T, Kakemoto H, Tsurumi T. Preparation of nm-sized BaTiO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate. J Mater Sci. 2003;38:2655–60.

    Article  CAS  Google Scholar 

  12. Huang C, Chen K, Chiu P, Sze P, Wang Y. The novel formation of barium titanate nanodendrites. J Nanomed. 2014;2014:1–7.

    Google Scholar 

  13. Clabaugh WS, Swiggard EM, Gilchrist R. Preparation of barium titanyl oxalate tetrahydrate for conversion to barium titanate of high purity. J Res Nat Bur Stand (U.S.). 1956;56:289–91.

    Article  CAS  Google Scholar 

  14. Kudaka K, Ilzumi K, Sasaki K. Preparation of stoichiometric barium titanyl oxalate tetrahydrate. J Am Ceram Soc Bull. 1982;61:1236.

    CAS  Google Scholar 

  15. Fang TT, Lin HB. Factors affecting the preparation of barium titanyl oxalate tetrahydrate. J Am Ceram Soc. 1989;72:1899–906.

    Article  CAS  Google Scholar 

  16. Fang TT, Lin HB, Hwang JB. Thermal analysis of precursors of barium titanate prepared by co-precipitation. J Am Ceram Soc. 1990;73:3363–7.

    Article  CAS  Google Scholar 

  17. Yamamura H, Watanabe A, Shirasaki S, Moriyoshi Y, Tanada M. Preparation of barium titanate by oxalate method in ethanol solution. Ceram Int. 1985;11:17–22.

    Article  CAS  Google Scholar 

  18. Amala Sekar M, Dhanaraj G, Bhat HL, Patil KC. Synthesis of fine-particle titanates by the pyrolysis of oxalate precursors. J Mater Sci. 1992;3:237–9.

    Google Scholar 

  19. Otta S, Bhattamisra SD. Kinetics and mechanism of the thermal decomposition of barium titanyl oxalate. J Therm Anal. 1994;41:419–33.

    Article  CAS  Google Scholar 

  20. Gallagher PK, Schrey F. Preparation of semiconducting titanates by chemical methods. J Am Ceram Soc. 1963;46:567.

    Article  CAS  Google Scholar 

  21. Balek V, Kaisersberger E. Preparation of BaTiO3 by thermal decomposition of BTO simultaneously investigated by emanation thermal analysis, TG-DTA and EGA. Thermochim Acta. 1985;85:207–10.

    Article  CAS  Google Scholar 

  22. Kiss K, Magder J, Vukasovigh MS, Lockhart RJ. Ferroelectrics of ultrafine particles size: 1. Synthesis of titanate powders of ultrafine particle size. J Am Ceram Soc. 1966;49:291.

    Article  CAS  Google Scholar 

  23. Saburi O. Semiconducting bodies in the family of barium titanates. J Am Ceram Soc. 1961;44:54–63.

    Article  Google Scholar 

  24. Gallagher PK, Thomson J. Thermal analysis of some barium and strontium titanyl oxalates. J Am Ceram Soc. 1965;48:644–7.

    Article  CAS  Google Scholar 

  25. Swilam MN, Gadalla AM. Decomposition of barium titanyl oxalate and assesment of barium titanate produced at various temperatures. Trans J Brit Ceram Soc. 1975;74:159.

    CAS  Google Scholar 

  26. Yen FS, Chang CT, Chang YH. Characterization of BTO tetrahydrate. J Am Ceram Soc. 1990;73:3422.

    Article  CAS  Google Scholar 

  27. Gopalakrishnamurthy HS, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates–1. Barium titanyl oxalate. J Inorg Nucl Chem. 1975;37:891–8.

    Article  CAS  Google Scholar 

  28. Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J Therm Anal Calorim. 2016;123:643–51.

    Article  CAS  Google Scholar 

  29. Fu XL, Fan XZ, Wang BZ, Huo H, Li JZ, Hu RZ. Thermal behavior, decomposition mechanism and thermal safety of 5, 7-diamino-4,6-dinitrobenzenfuroxan (CL-14). J Therm Anal Calorim. 2016;124:993–1001.

    Article  CAS  Google Scholar 

  30. Atakol M, Atakol A, Yiğiter AÖ, Svoboda I, Atakol O. Investigation of energetic materials prepared by reactions of diamines with picryl chloride: synthesis, structure and thermal behaviour. J Therm Anal Calorim. 2017;127:1931–40.

    Article  CAS  Google Scholar 

  31. Dollimore D, Griffiths DL, Nichoison D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J Chem Soc. 1963;3:2617–23.

    Article  Google Scholar 

  32. Koga N, Suzuki Y, Tatsuoka T. Thermal dehydration of magnesium acetate tetra hydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012;116:14477–86.

    Article  CAS  PubMed  Google Scholar 

  33. Kotru PN, Raina KK, Koul ML. The kinetics of solid-state decomposition of neodymium tartrate. Indian J Pure Appl Phys. 1987;25:220.

    CAS  Google Scholar 

  34. Schaube F, Koch L, Worner A, Steinha HM. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim Acta. 2012;538:9–20.

    Article  CAS  Google Scholar 

  35. Fatu D. Kinetics of gypsum dehydration. J Therm Anal Calorim. 2001;65:213–20.

    Article  CAS  Google Scholar 

  36. Modestov N, Poplankhin PV, Lyakhov NZ. Dehydration kinetics of lithium sulfate monohydrate single crystals. J Therm Anal Calorim. 2001;65:121–30.

    Article  CAS  Google Scholar 

  37. Halawy SA, Fouad NE, Mohamed MA, Zaki MI. Kinetic and thermodynamic parameters of the decomposition of chromium chromate in different gas atmospheres. J Therm Anal Calorim. 2001;65:167–76.

    Article  CAS  Google Scholar 

  38. Dalal PV, Saraf KB, Shimpi NG, Shah NR. Pyro and kinetic studies of barium oxalate crystals grown in agar gel. J Cryst Process Technol. 2012;2:156–60.

    Article  CAS  Google Scholar 

  39. Horowitz HH, Metzger G. New analysis of thermogravimetric traces, analytical chemistry. Anal Chem. 1963;35:1464–8.

    Article  CAS  Google Scholar 

  40. Freeman ES, Carroll B. The application of thermoanalytical decomposition of calcium oxalate mono-hydrate. J Phys Chem. 1958;62:394–7.

    Article  CAS  Google Scholar 

  41. Nakamoto K. Infrared spectra of inorganic and co-ordination compounds. 2nd ed. NewYork: Wiley; 1969. p. 245.

    Google Scholar 

  42. Xiao CJ, Jin CQ, Wang XH. Crystal structure of dense nanocrystalline BaTiO3 ceramics. Mater Chem Phys. 2008;111:2–3.

    Article  CAS  Google Scholar 

  43. Koga N, Sesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Sesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–28.

    Google Scholar 

  44. Koga N, Sesták J, Simon P. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113:1527–41.

    Article  CAS  Google Scholar 

  45. Bosewell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal. 1980;18:353–8.

    Article  Google Scholar 

  46. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  47. Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.

    Article  CAS  Google Scholar 

  48. Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium per carbonate: role of the surface product layer. J Phys Chem A. 2013;117:1880–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wada T, Nakano M, Koga N. Multistep kinetic behaviour of the thermal decomposition of granular sodium per carbonate: hindrance effect of the outer surface layer. J Phys Chem A. 2015;119:9749–60.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118:8059–70.

    Article  CAS  Google Scholar 

  51. Kitabayashi S, Koga N. Physico-geometrical mechanism and overall kinetics of thermally induced oxidative decomposition of tin(II) oxalate in air: formation process of micro structural tin(IV) oxide. J Phys Chem C. 2014;118:17847–61.

    Article  CAS  Google Scholar 

  52. Koga N, Goshi Y, Yamada S, Perez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes; co-precipitated zinc carbonates. J Therm Anal Calorim. 2013;111:1463–74.

    Article  CAS  Google Scholar 

  53. Koga N, Kasahara D, Kimura T. Aragonite crystal growth and solid-state aragonite-calcite transformation: a physico-geometrical relationship via thermal dehydration of included water. Cryst Growth Des. 2013;13:2238–46.

    Article  CAS  Google Scholar 

  54. Koga N, Yamada S, Kimura T. Thermal decomposition of silver carbonate: phenomenology and physico-geometrical kinetics. J Phys Chem C. 2013;117:326–36.

    Article  CAS  Google Scholar 

  55. Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51:3998–4007.

    Article  CAS  Google Scholar 

  56. Noda Y, Koga N. Phenomenological kinetics of the carbonation reaction of lithium hydroxide monohydrate: role of surface product layer and possible existence of a liquid phase. J Phys Chem C. 2014;118:5424–36.

    Article  CAS  Google Scholar 

  57. Nusrath K, Muraleedharan K. Effect of nano-transition metal oxides of Fe, Co and Ni and ferrites of Co and Ni on the multistage thermal decomposition of oxalates of Ce(III). J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7648-2.

    Article  Google Scholar 

  58. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

  59. Cai J, Liu R. Weibull mixture model for modelling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111:10681–6.

    Article  CAS  PubMed  Google Scholar 

  60. Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  61. Barmak K. A commentary on: Reaction kinetics in processes of nucleation and growth. Met Mater Trans A. 2010;41:2711–75.

    Article  CAS  Google Scholar 

  62. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79:271–81.

    Article  CAS  Google Scholar 

  63. Font R, Conesa JA, Molto J, Munoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrol. 2009;85:276–86.

    Article  CAS  Google Scholar 

  64. Lopez G, Aguado R, Olazar M, Arabiourrutia M, Bilbao J. Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag. 2009;29:2649–55.

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, N.V., Muraleedharan, K. Kinetic study of the multistep thermal behaviour of barium titanyl oxalate prepared via chemical precipitation method. J Therm Anal Calorim 136, 1295–1306 (2019). https://doi.org/10.1007/s10973-018-7777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7777-7

Keywords

Navigation