Simplified approach to modelling the catalytic degradation of low-density polyethylene (LDPE) by applying catalyst-free LDPE-TG profiles and the Friedman method

Abstract

The course of the thermogravimetric degradation of LDPE in the presence of different aluminosilicate catalysts was modelled by applying a differential isoconversional Friedman approach. An analysis of catalyst-free PE-TG profiles confirmed that the degradation profiles predicted by various reaction models overlap over the entire conversion range once the data are analysed using a differential isoconversional Friedman approach. The results demonstrate that the catalytic degradation of LDPE can be predicted by a correlation twin, i.e. the two specific functional relations between the activation energy, pre-exponential factor and conversion. The crucial step for ensuring good agreement between the predicted and the measured profiles is to extrapolate the discrete values of the activation energies and pre-exponential factors to the zero conversion. It turns out that linear extrapolation and interpolation from the discrete values outperforms regression functions based on various order polynomials, and that apparent deviations from the global trend at lower conversions are not a consequence of the misinterpretation of the experimental results but are an experimental fact. The assumption about the compensation effect between the pre-exponential factor and activation energy holds within the conversion range from 10 to 90%. However, it is generally unsuitable for modelling purposes due to the uncertain extrapolation of the kinetic parameters to the zero conversion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Saha B, Ghoshal AK. Model-free kinetics analysis of ZSM-5 catalyzed pyrolysis of waste LDPE. Thermochim Acta. 2007;453:120–7.

    Article  CAS  Google Scholar 

  2. 2.

    Araujo AS, Fernandes VJ Jr, Fernandes GJT. Thermogravimetric kinetics of polyethelyne degradation over silicoaluminophosphate. Thermochim Acta. 2002;392–393:55–61.

    Article  Google Scholar 

  3. 3.

    Coelho A, Costa L, Marques MM, Fonseca IM. Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413–414:183–91.

    Article  CAS  Google Scholar 

  4. 4.

    Marcilla A, Beltrán MI, Gómez-Siurana A, Navarro R, Valdés F. A global kinetic model as a tool to reproduce the deactivation behaviour of the HZSM-5 zeolite in the catalytic cracking of low-density polyethylene. Appl Catal A. 2007;328:124–31.

    Article  CAS  Google Scholar 

  5. 5.

    Marcilla A, Gómez-Siurana A, Valdés F. Catalytic cracking of low-density polyethylene over H-Beta and HZSM-5 zeolites: influence of the external surface. Kinetic Model Polym Degrad Stab. 2007;92:197–204.

    Article  CAS  Google Scholar 

  6. 6.

    Marcilla A, Gómez-Siurana A, Valdés F. Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions Study of the evolution of the process. J Anal Appl Pyrolysis. 2007;79:433–42.

    Article  CAS  Google Scholar 

  7. 7.

    Sarathy S, Wallis MD, Bhatia SK. Effect of catalyst loading on kinetics of catalytic degradation of high density polyethylene: experiment and modelling. Chem Eng Sci. 2010;65:796–806.

    Article  CAS  Google Scholar 

  8. 8.

    Garforth AA, Lin YH, Sharratt PN, Dwyer J. Production of hydrocarbons by catalytic degradation of high density polyethylene in a laboratory fluidised-bed reactor. Appl Catal A. 1998;169:331–42.

    Article  CAS  Google Scholar 

  9. 9.

    Renzini MS, Lerici LC, Sedran U, Pierella LB. Stability of ZSM-11 and BETA zeolites during the catalytic cracking of low-density polyethylene. J Anal Appl Pyrol. 2011;92:450–5.

    Article  CAS  Google Scholar 

  10. 10.

    Sakata Y, Uddin MA, Muto A, Kanada Y, Koizumi K, Murata K. Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst. J Anal Appl Pyrolysis. 1997;43:15–25.

    Article  CAS  Google Scholar 

  11. 11.

    Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off J Eur Commun. 2003. https://we.tl/t-lSJ2osHK3m

  12. 12.

    Covarrubiasa C, Graciab F, Palzab H. Catalytic degradation of polyethylene using nanosized ZSM-2 zeolite. Appl Catal A. 2010;384:186–91.

    Article  CAS  Google Scholar 

  13. 13.

    Ibañez M, Artetxe M, Lopez G, Elordi G, Bilbao J, Olazar M, Castaño P. Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE. Appl Catal B. 2014;148–149:436–45.

    Article  CAS  Google Scholar 

  14. 14.

    Djinović P, Tomše T, Grdadolnik J, Božič Š, Erjavec B, Zabilskiy M, Pintar A. Natural aluminosilicates for catalytic depolymerization of polyethylene to produce liquid fuel-grade hydrocarbons and low olefins. Catal Today. 2015;258:648–59.

    Article  CAS  Google Scholar 

  15. 15.

    Caldeira VPS, Santos AGD, Oliveira DS, Lima RB, Souza LD, Pergher SBC. Polyethylene catalytic cracking by thermogravimetric analysis. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6551-6.

    Article  Google Scholar 

  16. 16.

    Saha B, Reddy PK, Chowlu ACK, Ghoshal AK. Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP). Thermochim Acta. 2008;468:94–100.

    Article  CAS  Google Scholar 

  17. 17.

    Silva EFB, Ribeiro MP, Galvão LPFC, Fernandes VJ, Araujo AS. Kinetic study of low density polyethylene degradation on the silicoaluminophospate SAPO-11. J Therm Anal Calorim. 2011;103:465–9.

    Article  CAS  Google Scholar 

  18. 18.

    Berčič G, Djinović P, Pintar A. Procedure for generation of catalyst-free PE-TG profiles and its consequence on calculated activation energies. J Therm Anal Calorim. 2017;128:443–56.

    Article  CAS  Google Scholar 

  19. 19.

    Shabtai J, Xiao X, Zmierczak W. Depolymerization-liquefaction of plastics and rubbers. 1. polyethylene, polypropylene, and polybutadiene. Energy Fuels. 1997;11:76–87.

    Article  CAS  Google Scholar 

  20. 20.

    Ding W, Liang J, Anderson LL. Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process Technol. 1997;5:47–62.

    Article  Google Scholar 

  21. 21.

    Ding WB, Tuntawiroon W, Liang J, Anderson LL. Depolymerization of waste plastics with coal over metal-loaded silica-alumina catalysts. Fuel Process Technol. 1996;49:49–63.

    Article  CAS  Google Scholar 

  22. 22.

    Samuelsson LN, Moriana R, Babler MU, Ek M, Engvall K. Model-free rate expression for thermal decomposition processes: the case of microcrystalline cellulose pyrolysis. Fuel. 2015;143:438–47.

    Article  CAS  Google Scholar 

  23. 23.

    Berčič G. The universality of Friedman’s isoconversional analysis results in a model-less prediction of thermodegradation profiles. Thermochim Acta. 2017;650:1–7.

    Article  CAS  Google Scholar 

  24. 24.

    Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR. Formation of acid sites in amorphous silica-alumina. J Catal. 2010;269:201–18.

    Article  CAS  Google Scholar 

  25. 25.

    Eagle CD Jr. BNALib - A BASIC numerical analysis library for Personal Computers, ©1997-2002 (by C.D. Eagle Jr., Littleton (CO), USA, cdeaglejr@yahoo.com).

  26. 26.

    Saha B, Ghoshal AK. Model-free kinetics analysis of waste PE sample. Thermochim Acta. 2006;451:27–33.

    Article  CAS  Google Scholar 

  27. 27.

    Peterson JD, Vyazovkin S, Wight CA. kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  28. 28.

    Lyon RE. An integral method of nonisothermal kinetic analysis. Thermochim Acta. 1997;297:117–24.

    Article  CAS  Google Scholar 

  29. 29.

    Boudart M, Djéga-Mariadassou G. Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press 1984.

  30. 30.

    Bond GC, Keane MA, Kral H, Lercher JA. Compensation phenomena in heterogeneous catalysis: general principles and a possible explanation. Catal Rev Sci Eng. 2000;42(3):323–83.

    Article  CAS  Google Scholar 

  31. 31.

    Ceamanos J, Mastral JF, Millera A, Aldea ME. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrol. 2002;65:93–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PD and AP acknowledge financial support through research program P2-150 and research Grant Z2-5463 provided by Slovenian Research Agency. GB acknowledges Slovenian Research Agency for funding through research program P2-152.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gorazd Berčič.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4644 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berčič, G., Djinović, P. & Pintar, A. Simplified approach to modelling the catalytic degradation of low-density polyethylene (LDPE) by applying catalyst-free LDPE-TG profiles and the Friedman method. J Therm Anal Calorim 136, 1011–1020 (2019). https://doi.org/10.1007/s10973-018-7774-x

Download citation

Keywords

  • Catalytic degradation
  • Catalyst-free TG profiles
  • Isoconversional analysis
  • Polyethylene
  • Friedman