Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1153–1162 | Cite as

Thermodynamics of Hg2+ and Ag+ adsorption by 3-mercaptopropionic acid-functionalized superparamagnetic iron oxide nanoparticles

  • Sara Gràcia Lanas
  • Manuel Valiente
  • Marilena Tolazzi
  • Andrea MelchiorEmail author
Article
  • 96 Downloads

Abstract

Superparamagnetic iron nanoparticles (SPION) have been functionalized with 3-mercaptopropionic acid (3-MPA), characterized and applied for the removal of Ag+, Hg2+ and Pb2+ metal ions from aqueous solutions by iron oxide (Fe3O4). The heavy metal adsorption has been investigated by means of ICP-OES and isothermal titration calorimetry. Experimental data ware better fitted by Langmuir rather than Freundlich isotherms, and the thermodynamic parameters for the adsorption process of the metal ions on the functionalized SPION nanoparticles (SPION@3-MPA) were obtained. Isothermal titration calorimetry (ITC) is applied to monitor heavy metal adsorption on SPION@3-MPA: the process results to be exothermic for Hg2+ and Ag+, while it is weakly endothermic in the case of Pb2+, and the adsorption enthalpies and entropies have been obtained. The values of the thermodynamic parameters suggest that the Ag+ and Hg2+ ions interact strongly with the thiol groups, while the Pb2+ ions seem to be adsorbed by the material mostly via electrostatic interaction. When compared to other thiol-functionalized materials, the obtained SPION@3-MPA NP can be considered a competitive adsorbent for Ag+ and Hg2+ ions. The comparison between the ICP-OES adsorption rate and the enthalpy trend obtained by ITC supports shows that the latter technique can be a good tool for a fast testing of materials to be applied for heavy metal separation from solutions.

Keywords

Superparamagnetic iron oxide nanoparticles Surface functionalization Isothermal titration calorimetry Mercury Silver Adsorption 

Notes

Acknowledgements

The authors would like to thank Dr. Eleonora Aneggi for the assistance with material characterization.

Supplementary material

10973_2018_7763_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 49 kb)

References

  1. 1.
    Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ. 2016;569–570:476–88.CrossRefGoogle Scholar
  2. 2.
    Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res. 2015;22:13772–99.CrossRefGoogle Scholar
  3. 3.
    Sherameti I, Varma A, editors. Heavy metal contamination of soils. Berlin: Springer; 2015.Google Scholar
  4. 4.
    Kim K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85.CrossRefGoogle Scholar
  5. 5.
    Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016;96:32–48.CrossRefGoogle Scholar
  6. 6.
    Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med. Sci. Monit. 2005;11:RA329–36.Google Scholar
  7. 7.
    Ratte HT. Annual review bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem. 1999;18:89–108.CrossRefGoogle Scholar
  8. 8.
    Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92:407–18.CrossRefGoogle Scholar
  9. 9.
    Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater. 2012;211–212:317–31.CrossRefGoogle Scholar
  10. 10.
    Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. 2013;113:7728–68.CrossRefGoogle Scholar
  11. 11.
    Kefeni KK, Mamba BB, Msagati TAM. Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol. 2017;188:399–422.CrossRefGoogle Scholar
  12. 12.
    Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG. High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. Chemsuschem. 2010;3:749–57.CrossRefGoogle Scholar
  13. 13.
    Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol. 2007;41:5114–9.CrossRefGoogle Scholar
  14. 14.
    Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.CrossRefGoogle Scholar
  15. 15.
    Mariani G, Fabbri M, Negrini F, Ribani PL. High-gradient magnetic separation of pollutant from wastewaters using permanent magnets. Sep Purif Technol. 2010;72:147–55.CrossRefGoogle Scholar
  16. 16.
    Burks T, Avila M, Akhtar F, Göthelid M, Lansåker PC, Toprak MS, Muhammed M, Uheida A. Studies on the adsorption of chromium(VI) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2014;425:36–43.CrossRefGoogle Scholar
  17. 17.
    Morillo D, Uheida A, Pérez G, Muhammed M, Valiente M. Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2015;438:227–34.CrossRefGoogle Scholar
  18. 18.
    Kim C, Lee SS, Lafferty BJ, Giammar DE, Fortner JD. Engineered superparamagnetic nanomaterials for arsenic(V) and chromium(VI) sorption and separation: quantifying the role of organic surface coatings. Environ Sci Nano. 2018;5:556–63.CrossRefGoogle Scholar
  19. 19.
    Melchior A, Lanas SG, Valiente M, Tolazzi M. Thermodynamics of sorption of platinum on superparamagnetic nanoparticles functionalized with mercapto groups. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7408-3.Google Scholar
  20. 20.
    Cavallo L, Del Piero S, Ducéré J, Fedele R, Melchior A, Morini G, Piemontesi F, Tolazzi M. Key interactions in heterogeneous Ziegler—Natta catalytic systems: structure and energetics of TiCl4-Lewis base complexes. J Phys Chem C. 2007;111:4412–9.CrossRefGoogle Scholar
  21. 21.
    Melchior A, Peralta E, Valiente M, Tavagnacco C, Endrizzi F, Tolazzi M. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study. Dalton Trans. 2013;42:6074–82.CrossRefGoogle Scholar
  22. 22.
    Di Bernardo P, Zanonato PL, Melchior A, Portanova R, Tolazzi M, Choppin GR, Wang Z. Thermodynamic and spectroscopic studies of lanthanides (III) complexation with polyamines in dimethyl sulfoxide. Inorg Chem. 2008;47:1155–64.CrossRefGoogle Scholar
  23. 23.
    Melchior A, Gaillard C, Gràcia Lanas S, Tolazzi M, Billard I, Georg S, Sarrasin L, Boltoeva M. Nickel(II) complexation with nitrate in dry [C4 mim][Tf 2 N] ionic liquid: a spectroscopic, microcalorimetric, and molecular dynamics study. Inorg Chem. 2016;55:3498–507.CrossRefGoogle Scholar
  24. 24.
    Endrizzi F, Di Bernardo P, Zanonato PL, Tisato F, Porchia M, Ahmed Isse A, Melchior A, Tolazzi M. Cu(I) and Ag(I) complex formation with the hydrophilic phosphine 1,3,5-triaza-7-phosphadamantane in different ionic media. How to estimate the effect of a complexing medium. Dalton Trans. 2017;46:1455–66.CrossRefGoogle Scholar
  25. 25.
    Endrizzi F, Melchior A, Tolazzi M, Rao L. Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies. Dalton Trans. 2015;44:13835–44.CrossRefGoogle Scholar
  26. 26.
    Del Piero S, Di Bernardo P, Fedele R, Melchior A, Polese P, Tolazzi M. Affinity of polypyridines towards Cd(II) and Co(II) ions: a thermodynamic and DFT study. Eur J Inorg Chem. 2006;2006:3738–45.CrossRefGoogle Scholar
  27. 27.
    Credendino R, Minenkov Y, Liguori D, Piemontesi F, Melchior A, Morini G, Tolazzi M, Cavallo L. Accurate experimental and theoretical enthalpies of association of TiCl4 with typical Lewis bases used in heterogeneous Ziegler-Natta catalysis. Phys Chem Chem Phys. 2017;19:26996–7006.CrossRefGoogle Scholar
  28. 28.
    Melchior A, Peressini S, Portanova R, Sangregorio C, Tavagnacco C, Tolazzi M. Cobalt(II) and cadmium(II) chelates with nitrogen donors and O2 bonding to Co(II) derivatives. Inorg Chim Acta. 2004;357:3473–82.CrossRefGoogle Scholar
  29. 29.
    Del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. N-methylation effects on the coordination chemistry of cyclic triamines with divalent transition metals and their Co(II) dioxygen carriers. Eur J Inorg Chem. 2006;2006:304–14.CrossRefGoogle Scholar
  30. 30.
    Braga PRS, Costa AA, de Macedo JL, Ghesti GF, de Souza MP, Dias JA, Dias SCL. Liquid phase calorimetric-adsorption analysis of Si-MCM-41: evidence of strong hydrogen-bonding sites. Microporous Mesoporous Mater. 2011;139:74–80.CrossRefGoogle Scholar
  31. 31.
    Arakaki LNH, Filha VLSA, Germano AFS, Santos SSG, Fonseca MG, Sousa KS, Espínola JGP, Arakaki T. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution. Thermochim Acta. 2013;556:34–40.CrossRefGoogle Scholar
  32. 32.
    Silva Filho EC, Lima LCB, Sousa KS, Fonseca MG, Pereira FAR. Calorimetry studies for interaction in solid/liquid interface between the modified cellulose and divalent cation. J Therm Anal Calorim. 2013;114:57–66.CrossRefGoogle Scholar
  33. 33.
    Vieira Eunice FS, de Simoni JA, Airoldi C. Interaction of cations with SH-modified silica gel: thermochemical study through calorimetric titration and direct extent of reaction determination. J Mater Chem. 1997;7:2249–52.CrossRefGoogle Scholar
  34. 34.
    da Fonseca M. Phyllosilicate-like structure anchored silylating agents: calorimetric data on divalent cation-aminated centre interactions in the lamellar cavity. J Chem Soc Dalton Trans. 1999;259:3687–92.CrossRefGoogle Scholar
  35. 35.
    Evangelista SM, De Oliveira E, Castro GR, Zara LF, Prado AGS. Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surf Sci. 2007;601:2194–202.CrossRefGoogle Scholar
  36. 36.
    Zhang N, Zang GL, Shi C, Yu HQ, Sheng GP. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater. 2016;316:11–8.CrossRefGoogle Scholar
  37. 37.
    Huang Y, Keller AA. Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. Environ Sci Nano. 2016;3:1206–14.CrossRefGoogle Scholar
  38. 38.
    Elwakeel KZ, El-Sayed GO, Darweesh RS. Fast and selective removal of silver(I) from aqueous media by modified chitosan resins. Int J Miner Process. 2013;120:26–34.CrossRefGoogle Scholar
  39. 39.
    Liang X, Xu Y, Sun G, Wang L, Sun Y, Sun Y, Qin X. Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chem Eng J. 2011;174:436–44.CrossRefGoogle Scholar
  40. 40.
    Gràcia Lanas S, Valiente M, Aneggi E, Trovarelli A, Tolazzi M, Melchior A. Efficient fluoride adsorption by mesoporous hierarchical alumina microspheres. RSC Adv. 2016;6:42288–96.CrossRefGoogle Scholar
  41. 41.
    Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. II. Protein Sci. 1995;4:2559–61.CrossRefGoogle Scholar
  42. 42.
    Chaires JB. Possible origin of differences between van’t Hoff and calorimetric enthalpy estimates. Biophys Chem. 1997;64:15–23.CrossRefGoogle Scholar
  43. 43.
    Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys Chem. 1997;64:121–6.CrossRefGoogle Scholar
  44. 44.
    Mizoue LS, Tellinghuisen J. Calorimetric vs. van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2+-crown ether complexation. Biophys Chem. 2004;110:15–24.CrossRefGoogle Scholar
  45. 45.
    Welsch N, Lu Y, Dzubiella J, Ballauff M. Adsorption of proteins to functional polymeric nanoparticles. Polymer (Guildf). 2013;54:2835–49.CrossRefGoogle Scholar
  46. 46.
    Teodoro FS, do Ramos SNC, Elias MMC, Mageste AB, Ferreira GMD, da Silva LHM, Gil LF, Gurgel LVA, Adarme OFH. Synthesis and application of a new carboxylated cellulose derivative. Part II: removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution. J Colloid Interface Sci. 2017;487:266–80.CrossRefGoogle Scholar
  47. 47.
    Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res. 2005;20:3255–64.CrossRefGoogle Scholar
  48. 48.
    Madrakian T, Afkhami A, Zadpour B, Ahmadi M. New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J Ind Eng Chem. 2015;21:1160–6.CrossRefGoogle Scholar
  49. 49.
    Rangabhashiyam S, Anu N, Giri Nandagopal MS, Selvaraju N. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng. 2014;2:398–414.CrossRefGoogle Scholar
  50. 50.
    Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M. Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem. 2007;22:249–75.CrossRefGoogle Scholar
  51. 51.
    Kammerer J, Carle R, Kammerer DR. Adsorption and ion exchange: basic principles and their application in food processing. J Agric Food Chem. 2011;59:22–42.CrossRefGoogle Scholar
  52. 52.
    Azizian S, Eris S, Wilson LD. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem Phys. 2018;513:99–104.CrossRefGoogle Scholar
  53. 53.
    Drago RS, Dias SC, Torrealba M, De Lima L. Calorimetric and spectroscopic investigation of the acidity of HZSM-5. J Am Chem Soc. 1997;119:4444–52.CrossRefGoogle Scholar
  54. 54.
    del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. A novel multipurpose excel tool for equilibrium speciation based on Newton–Raphson method and on a hybrid genetic algorithm. Ann Chim. 2006;96:29–49.CrossRefGoogle Scholar
  55. 55.
    Polese P, Tolazzi M, Melchior A. cEST: a flexible tool for calorimetric data analysis. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7409-2.Google Scholar
  56. 56.
    Di Bernardo P, Zanonato PL, Benetollo F, Melchior A, Tolazzi M, Rao L. Energetics and structure of uranium(VI)-acetate complexes in dimethyl sulfoxide. Inorg Chem. 2012;51:9045–55.CrossRefGoogle Scholar
  57. 57.
    Kumar R, Inbaraj BS, Chen BH. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material. Mater Res Bull. 2010;45:1603–7.CrossRefGoogle Scholar
  58. 58.
    Di Bernardo P, Melchior A, Portanova R, Tolazzi M, Zanonato PL. Complex formation of N-donor ligands with group 11 monovalent ions. Coord Chem Rev. 2008;252:1270–85.CrossRefGoogle Scholar
  59. 59.
    Del Piero S, Fedele R, Melchior A, Portanova R, Tolazzi M, Zangrando E. Solvation effects on the stability of silver(I) complexes with pyridine-containing ligands studied by thermodynamic and DFT methods. Inorg Chem. 2007;46:4683–91.CrossRefGoogle Scholar
  60. 60.
    Melchior A, Peralta E, Valiente M, Tolazzi M. Solvent effect on heavy metal coordination with thioether ligands: a thermodynamic and theoretical study. Polyhedron. 2014;75:88–94.CrossRefGoogle Scholar
  61. 61.
    Jiang W, Lamb JD, Bradshaw JS, Izatt RM, Wu G. High-specificity Thiacrown ether reagents for silver(I) over bivalent mercury and lead. Thermodynamic and13C NMR relaxation time studies. J Am Chem Soc. 1991;113:6538–41.CrossRefGoogle Scholar
  62. 62.
    Hancock RD, Martell AE. Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev. 1989;89:1875–914.CrossRefGoogle Scholar
  63. 63.
    Yari S, Abbasizadeh S, Mousavi SE, Moghaddam MS, Moghaddam AZ. Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Saf Environ Prot. 2015;94:159–71.CrossRefGoogle Scholar
  64. 64.
    MacDougall FH, Topol LE. Ionic equilibria in aqueous and mixed solvent solutions of silver acetate and silver monochloroacetate. J Phys Chem. 1952;56:1090–3CrossRefGoogle Scholar
  65. 65.
    Giordano TH. Anglesite (PbSO4) solubility in acetate solutions: the determination of stability constants for lead acetate complexes to 85 °C. Geochim Cosmochim Acta Pergamon. 1989;53:359–66.CrossRefGoogle Scholar
  66. 66.
    Ravichandran M. Interactions between mercury and dissolved organic matter—a review. Chemosphere Pergamon. 2004;55:319–31.CrossRefGoogle Scholar
  67. 67.
    Fu L, Zhang L, Wang S, Peng J, Zhang G. Silica nanoparticles modified with trithiocyanuric acid as a potential adsorbent for removal of Ag+ from aqueous solutions. Water Air Soil Pollut. 2017;228:273.CrossRefGoogle Scholar
  68. 68.
    Quang DV, Lee JE, Kim JK, Kim YN, Shao GN, Kim HT. A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles. Powder Technol. 2013;235:221–7.CrossRefGoogle Scholar
  69. 69.
    Xin L, Yin Q, Xin Z, Zhang Z. Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chem Eng Sci. 2010;65:6471–7.CrossRefGoogle Scholar
  70. 70.
    Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, Xu H, Zhou J. Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J. 2013;226:30–8.CrossRefGoogle Scholar
  71. 71.
    Zhang C, Sui J, Li J, Tang Y, Cai W. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J. 2012;210:45–52.CrossRefGoogle Scholar
  72. 72.
    Zhu H, Shen Y, Wang Q, Chen K, Wang X, Zhang G, Yang J, Guo Y, Bai R. Highly promoted removal of Hg(II) with magnetic CoFe2O4@SiO2 core–shell nanoparticles modified by thiol groups. RSC Adv. 2017;7:39204–15.CrossRefGoogle Scholar
  73. 73.
    Odio OF, Lartundo-Rojas L, Palacios EG, Martínez R, Reguera E. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions. Appl Surf Sci. 2016;386:160–77.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.DPIA, Laboratorio di Scienze e Tecnologie ChimicheUniversità di UdineUdineItaly
  2. 2.Departamento de Quimica, Centre GTSUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations