Skip to main content
Log in

Analysis of the effects of inclination angle, nanoparticle volume fraction and its size on forced convection from an inclined elliptic cylinder in aqueous nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a detailed numerical investigation has been carried out to study the forced convection heat transfer from an inclined elliptic cylinder of a fixed aspect ratio of 0.5 immersed in a streaming water-based Al2O3 nanofluid using the two-phase Buongiorno’s model. In particular, this study presents extensive numerical results on how the cylinder inclination angle, nanoparticle volume fraction and its size are going to influence the local flow, temperature and nanoparticle concentration fields in the vicinity of the cylinder surface as well as the gross engineering parameters like the drag coefficient and Nusselt number over the following ranges of conditions as: Reynolds number, \(0.01 \le Re \le 40\); cylinder inclination angle, \(0 \le \lambda \le 90\); nanoparticle volume fraction, \(0 \le \phi \le 0.06\) and two nanoparticle sizes (dnp), namely 30 nm and 60 nm. It has been found that both the Nusselt number and drag force increase with \(\phi\), but decrease with dnp under otherwise identical conditions. On the other hand, at a particular value of Re, \(\phi\) and dnp, the value of the average Nusselt number increases with the increasing values of \(\lambda\), whereas the value of the drag coefficient decreases. Finally, from an application standpoint, a simple analytical formula for the average Nusselt number is provided as a function of Re, \(\phi\) and \(\lambda\) which will facilitate the interpolation of the present results for the intermediate values of these governing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Semi-minor axis (m)

b :

Semi-major axis (m)

AR:

Aspect ratio of the cylinder (= a/b), dimensionless

C p,bf :

Specific heat capacity of base fluid (J kg−1 K−1)

C p,np :

Specific heat capacity of nanoparticle (J kg−1 K−1)

C p,nf :

Specific heat capacity of nanofluid (J kg−1 K−1)

C D :

Total drag coefficient, dimensionless

D :

Diameter of the outer domain (m)

d np :

Diameter of the nanoparticle (nm)

F D :

Total drag force (N)

h :

Heat transfer coefficient (W m−2 K−1)

k bf :

Thermal conductivity of base fluid (W m−1 K−1)

k np :

Thermal conductivity of nanoparticle (W m−1 K−1)

k nf :

Thermal conductivity of nanofluid, (W m−1 K−1)

n s :

Unit normal vector, dimensionless

Nu l :

Local Nusselt number, dimensionless

Nu :

Average Nusselt number, dimensionless

P :

Pressure, dimensionless

Pr :

Prandtl number, dimensionless

Re :

Reynolds number, dimensionless

S :

Surface area of the cylinder, m2

T :

Temperature, K

T :

Temperature difference, (= Tw − T), K

U :

Velocity vector, dimensionless

U :

Velocity at the inlet (ms−1)

κ :

Boltzmann constant (m2 kg s−2 K−1)

ρ bf :

Density of base fluid (kg m−3)

ρ np :

Density of nanoparticle (kg m−3)

ρ nf :

Density of nanofluid (kg m−3)

µ bf :

Viscosity of base fluid (Pa s)

µ nf :

Viscosity of nanofluid (Pa s)

θ :

Temperature, dimensionless

\(\phi\) :

Volume fraction of nanoparticle, dimensionless

w:

Condition at the cylinder surface

∞:

Condition corresponds to far away from the cylinder surface

bf:

Base fluid

np:

Nanoparticle

nf:

Nanofluid

References

  1. Zukauskas A. Heat transfer from tubes in crossflow. Adv Heat Transf. 1972;8:93–160.

    Article  CAS  Google Scholar 

  2. Morgan VT. The overall convective heat transfer from smooth circular cylinders. Adv Heat Transf. 1975;11:199–264.

    Article  Google Scholar 

  3. Chhabra RP. Fluid flow and heat transfer from circular and non-circular cylinders submerged in non-Newtonian liquids. Adv Heat Transf. 2011;43:289–417.

    Article  Google Scholar 

  4. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME. 1995;231:99–106.

    CAS  Google Scholar 

  5. Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev. 2012;16:5625–38.

    Article  CAS  Google Scholar 

  6. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  7. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  8. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. New York: Wiley; 2007.

    Book  Google Scholar 

  9. Khan WA, Culham RJ, Yovanovich MM. Fluid flow around and heat transfer from elliptical cylinders: analytical approach. J Thermophys Heat Transf. 2005;19:178–85.

    Article  CAS  Google Scholar 

  10. Ota T, Nishiyama H, Taoka Y. Heat transfer and flow around an elliptic cylinder. Int J Heat Mass Transf. 1984;27:1771–9.

    Article  Google Scholar 

  11. D’alessio SJD, Dennis SCR. Steady laminar forced convection from an elliptic cylinder. J Eng Math. 1995;29(2):181–93.

    Article  Google Scholar 

  12. Badr HM. Forced convection from a straight elliptical tube. Heat Mass Transf. 1998;34(2):229–36.

    Article  CAS  Google Scholar 

  13. Patel SA, Chhabra RP. Forced convection from an inclined elliptical cylinder with constant heat flux: effect of Prandtl number. New Delhi: Springer; 2017.

    Google Scholar 

  14. Patel SA, Chhabra RP. Effect of the angle of incidence on laminar forced convection from an elliptical cylinder in Bingham plastic fluids. Num Heat Transf Part A Appl. 2016;70(8):917–37.

    Article  CAS  Google Scholar 

  15. Patel SA, Chhabra RP. Heat transfer in Bingham plastic fluids from a heated elliptical cylinder. Int J Heat Mass Transf. 2014;73:671–92.

    Article  Google Scholar 

  16. Bharti RP, Sivakumar P, Chhabra RP. Forced convection heat transfer from an elliptical cylinder to power-law fluids. Int J Heat Mass Transf. 2008;51(7):1838–53.

    Article  CAS  Google Scholar 

  17. Sasmal C. Effects of axis ratio, nanoparticle volume fraction and its size on the momentum and heat transfer phenomena from an elliptic cylinder in water-based CuO nanofluids. Powder Technol. 2017;313:272–86.

    Article  CAS  Google Scholar 

  18. Selvakumar RD, Dhinakaran S. Nanofluid flow and heat transfer around a circular cylinder: a study on effects of uncertainties in effective properties. J Mol Liq. 2016;223:572–88.

    Article  CAS  Google Scholar 

  19. Valipour MS, Ghadi AZ. Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid. Int Commun Heat Mass Transf. 2011;38:1296–304.

    Article  CAS  Google Scholar 

  20. Etminan-Farooji V, Ebrahimnia-Bajestan E, Niazmand H, Wongwises S. Uncon- fined laminar nanofluid flow and heat transfer around a square cylinder. Int J Heat Mass Transf. 2012;55:1475–85.

    Article  CAS  Google Scholar 

  21. Bovand M, Rashidi S, Esfahani JA. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle. Energy Convers Manag. 2015;97:212–23.

    Article  CAS  Google Scholar 

  22. Sasmal C, Nirmalkar N. Momentum and heat transfer characteristics from heated spheroids in water based nanofluids. Int J Heat Mass Transf. 2016;96:582–601.

    Article  CAS  Google Scholar 

  23. Behroyan I, Vanaki SM, Ganesan P, Saidur R. A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube. Int Commun Heat Mass Transf. 2016;70:27–37.

    Article  CAS  Google Scholar 

  24. Kalteh M, Abbassi A, Saffar-Avval M, Harting J. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Flow. 2011;32(1):107–16.

    Article  CAS  Google Scholar 

  25. Kalteh M, Abbassi A, Saffar-Avval M, Frijns A, Darhuber A, Harting J. Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Appl Therm Eng. 2012;36:260–8.

    Article  CAS  Google Scholar 

  26. Toosi MH, Siavashi M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J Mol Liq. 2017;238:553–69.

    Article  CAS  Google Scholar 

  27. Alinia M, Ganji DD, Gorji-Bandpy M. Numerical study of mixed convection in an inclined two-sided lid driven cavity filled with nanofluid using two-phase mixture model. Int Commun Heat Mass Transf. 2011;38(10):1428–35.

    Article  CAS  Google Scholar 

  28. Kumar N, Puranik BP. Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach. Appl Therm Eng. 2017;111:1674–81.

    Article  CAS  Google Scholar 

  29. Mirzaei M, Saffar-Avval M, Naderan H. Heat transfer investigation of laminar developing flow of nanofluids in a microchannel based on Eulerian–Lagrangian approach. Can J Chem Eng. 2014;92(6):1139–49.

    Article  CAS  Google Scholar 

  30. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  31. Sheremet MA, Pop I. Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model. Comput Fluids. 2015;118:182–90.

    Article  CAS  Google Scholar 

  32. Motlagh SY, Soltanipour H. Natural convection of al 2 o 3-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310–20.

    Article  CAS  Google Scholar 

  33. Sheremet MA, Groşan T, Pop I. Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur J Mech B/Fluids. 2015;53:241–50.

    Article  Google Scholar 

  34. Garoosi F, Garoosi S, Hooman K. Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Technol. 2014;268:279–92.

    Article  CAS  Google Scholar 

  35. Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Conjugate heat transfer of Al2O3–water nanofluid in a square cavity heated by a triangular thick wall using Buongiorno’s two-phase model. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7473-7.

    Article  Google Scholar 

  36. Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of al 2 o 3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126(3):1947–62.

    Article  CAS  Google Scholar 

  37. Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7519-x.

    Article  Google Scholar 

  38. Selimefendigil F, Ismael MA, Chamkha AJ. Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int J Mech Sci. 2017;124:95–108.

    Article  Google Scholar 

  39. Selimefendigil F, Oztop HF, Chamkha AJ. Analysis of mixed convection of nanofluid in a 3d lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int Commun Heat Mass Transf. 2017;87:40–51.

    Article  CAS  Google Scholar 

  40. Selimefendigil F, Oztop HF. Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field. Int J Heat Mass Transf. 2017;108:156–71.

    Article  CAS  Google Scholar 

  41. Shehzad N, Zeeshan A, Ellahi R, Vafai K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq. 2016;222:446–55.

    Article  CAS  Google Scholar 

  42. Heyhat MM, Kowsary F. Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Transf. 2010;132(6):062401.

    Article  CAS  Google Scholar 

  43. Alvariño PF, Jabardo JMS, Arce A, Galdo ML. A numerical investigation of laminar flow of a water/alumina nanofluid. Int J Heat Mass Transf. 2013;59:423–32.

    Article  CAS  Google Scholar 

  44. Alvarino PF, Jabardo JMS, Arce A, Galdo ML. Heat transfer enhancement in nanofluids. A numerical approach. J Phys Conf Ser. 2012;395(1):012116.

    Article  CAS  Google Scholar 

  45. Selimefendigil F, Oztop HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;110:231–47.

    Article  CAS  Google Scholar 

  46. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  47. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  48. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  49. Park JK, Park SO, Hyun JM. Flow regimes of unsteady laminar flow past a slender elliptic cylinder at incidence. Int J Heat Fluid Flow. 1989;10:311–7.

    Article  CAS  Google Scholar 

  50. Ghanbarpour M, Haghigi EB, Khodabandeh R. Thermal properties and rheo- logical behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci. 2014;53:227–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi Sasmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmal, C. Analysis of the effects of inclination angle, nanoparticle volume fraction and its size on forced convection from an inclined elliptic cylinder in aqueous nanofluids. J Therm Anal Calorim 136, 1433–1445 (2019). https://doi.org/10.1007/s10973-018-7750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7750-5

Keywords

Navigation