Skip to main content
Log in

Effect of chimney height and collector roof angle on flow parameters of solar updraft tower (SUT) plant

A 3D numerical analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar updraft tower (SUT) is a viable option to produce electrical energy from solar energy. Extensive studies needed to estimate the flow parameters and analyse this set-up. A 3D numerical model is developed to analyse the flow parameters such as pressure, temperature and velocity of SUT plant. Effect of geometrical parameters such as chimney height and collector roof angle is studied numerically in this work. The diameter of absorber plate and chimney as 3.5 m and 0.6 m and the collector roof angle, chimney height and inlet gap as 30º, 6 m and 0.1 m, respectively, are selected for numerical simulation. A parametric study is performed for varying chimney heights from 3 to 8 m and collector roof angle 20º–35º with an increment of 5º each case. The airflow inside the SUT is turbulent, renormalization group (RNG) k-ε model is selected, and (discrete ordinates) DO model is incorporated for evaluation of radiation effect inside the domain. From the simulation results, it is concluded that when collector roof angle is increased, air velocity is increased and also air temperature is slightly dropped. It is found that there is 31% velocity enhancement when the chimney height is increased from 3 to 8 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a:

Absorption coefficient, m−1

Acr :

Collector roof angle, °

Ach :

Cross-sectional area of chimney, m2

Ch :

Height of chimney, m

CFD:

Computational fluid dynamics

Dap :

Diameter of absorber plate, m

Dc :

Chimney diameter, m

DO:

Discrete ordinates

FEM:

Finite element method

FVM:

Finite volume method

F G :

Hourly global radiation, Wm−2

g:

Gravity, ms−2

G b :

Turbulent kinetic energy due to buoyancy, m2s−2

G k :

Turbulent kinetic energy due to mean velocity, m2s−2

Gr:

Grashof number

h:

Convection heat transfer coefficient, Wm−2 K−1

I:

Solar intensity, Wm−2

I :

Black body intensity, Wm−2

k :

Turbulent kinetic energy, m2s−2

L:

Characteristic length, m

m a :

Mass flow rate, Kgs−1

n :

Refractive index

Pr:

Prandtl number

Q:

Volumetric flow rate, m3s−1

Qa :

Heat flow rate, W

Δp:

Pressure difference between chimney base and surroundings, Pa

Ra:

Rayleigh number

RNG:

Renormalization group

RTE:

Radiative transfer equation

SUT:

Solar updraft tower

t:

Inlet gap, m

T:

Temperature, K

ΔT:

Temperature difference, K

v max :

Maximum air velocity, ms−1

α:

Thermal diffusivity, m2s−1

β:

Thermal expansion coefficient, °C−1

ε:

Rate of dissipation of turbulent energy, m2s−3

μt :

Turbulent viscosity, m2s−1

ϑ :

Kinematic viscosity, m2s−1

ϕ :

Phase function, sr−1

dΩ′:

Solid angle, steradian

ρ:

Density, kgm−3

η coll :

Efficiency of collector

γaa :

Lapse rate in ambient air temperature

References

  1. Haaf W, Friedrich K, Mayr G, Schlaich J. Solar chimneys, part I: principle and construction of the pilot plant in Manzanares. Int J Sol Energy. 1983;2:3–20.

    Article  Google Scholar 

  2. Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems utilization of solar induced convective flows for power generation. ASME J Sol Energy Eng. 2005;127:117–24.

    Article  Google Scholar 

  3. Ghalamchi M, Kasaeian A, Ghalamchi M, Mirzahosseini AH. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renew Energy. 2016;91:477–83.

    Article  Google Scholar 

  4. Xu G, Ming T, Pan Y, Meng F, Zhou C. Numerical analysis on the performance of solar chimney power plant system. Energy Convers Manag. 2011;52:876–83.

    Article  Google Scholar 

  5. Bassiouny R, Korah NSA. Effect of solar chimney inclination angle on space flow pattern and ventilation rate. Energ Build. 2009;41:190–6.

    Article  Google Scholar 

  6. Shahreza AR, Imani H. Experimental and numerical investigation on an innovative solar chimney. Energy Convers Manag. 2015;95:446–52.

    Article  Google Scholar 

  7. Kasaeian A, Mehran G, Ghalamchi M. Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Convers Manag. 2014;83:28–34.

    Article  Google Scholar 

  8. Gholamalizadeh E, Mansouri SH. A comprehensive approach to design and improve a solar chimney power plant: a special case—Kerman project. Appl Energy. 2013;102:975–82.

    Article  Google Scholar 

  9. Zhou X, Yuan S, Bernardes MDS. Sloped-collector solar updraft tower power plant performance. Int J Heat Mass Transf. 2013;66:798–807.

    Article  Google Scholar 

  10. Li J, Guo P, Wang Y. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renew Energy. 2012;47:21–8.

    Article  Google Scholar 

  11. Ramakrishna B, Chandramohan VP, Kirankumar K. Performance parameter evaluation, materials selection, solar radiation with energy losses, energy storage and turbine design procedure for a pilot scale solar updraft tower. Energy Convers Manag. 2017;150:451–62.

    Article  Google Scholar 

  12. Sakonidou EP, Karapantsios TD, Balouktsis AI, Chassapis D. Modeling of the optimum tilt of a solar chimney for maximum air flow. Sol Energy. 2008;82:80–94.

    Article  Google Scholar 

  13. Maia CB, Ferreira AG, Valle RM, Cortez MFB. Theoretical evaluation of the influence of geometric parameters and materials on the behaviour of the airflow in a solar chimney. Comput Fluids. 2009;38:625–36.

    Article  CAS  Google Scholar 

  14. Rabehi R, Chaker A, Aouachria Z, Tingzhen M. CFD analysis on the performance of a solar chimney power plant system: case study in Algeria. Int J Green Energy. 2017;14(12):971–82.

    Article  Google Scholar 

  15. Zhou X, Yuan S. Wind effects on a solar updraft power plant. J Wind Eng Ind Aerodyn. 2017;170:294–305.

    Article  Google Scholar 

  16. Eryner D, Hollick J, Kuscu H. Thermal performance of a transpired solar collector updraft tower. Energy Convers Manag. 2017;142:286–95.

    Article  Google Scholar 

  17. Ahmed A, Zied D, Abdallah B, Mohamed SA. Experimental and numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy Build. 2017;139:263–76.

    Article  Google Scholar 

  18. Hu S, Leung DYC, Chan JCY. Impact of geometry of divergent chimneys on the power output of a solar chimney power plant. Energy. 2017;120:1–11.

    Article  Google Scholar 

  19. Hassan A, Ali M, Waqas A. Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy. 2018;142:411–25.

    Article  Google Scholar 

  20. Gholamalizadeh E, Chung JD. Analysis of fluid flow and heat transfer on a solar updraft tower power plant coupled with a wind turbine using computational fluid dynamics. Appl Therm Eng. 2017;126(126):548–58.

    Article  Google Scholar 

  21. Minea AA. Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. J Therm Anal Calorim. 2015;121:711–20.

    Article  CAS  Google Scholar 

  22. Ye WB, Zhu DS, Wang N. Effect of inclination angles on the thermal energy storage in a quadrantal cavity. J Therm Anal Calorim. 2012;110:1487–92.

    Article  CAS  Google Scholar 

  23. Kasaeian A, Mahmoudi AR, Astanali PR, Hejab A. 3D simulation of solar chimney power plant considering turbine blades. Energy Convers Manag. 2017;147:55–65.

    Article  Google Scholar 

  24. Hu Z, Li A, Gao R, Yin H. Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs. J Therm Anal Calorim. 2015;120:1407–16.

    Article  CAS  Google Scholar 

  25. Elminir HK, Ghitas AE, El-Hussainy F, Hamid R, Beheary MM, Abdel-Moneim KM. Optimum solar flat plate collector slope: case study for Helwan, Egypt. Energy Convers Manag. 2006;47:624–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Science & Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi-110 070, India, Grant No. File Number: EEQ/2016/000111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Chandramohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Chandramohan, V.P. Effect of chimney height and collector roof angle on flow parameters of solar updraft tower (SUT) plant. J Therm Anal Calorim 136, 133–145 (2019). https://doi.org/10.1007/s10973-018-7749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7749-y

Keywords

Navigation