Skip to main content
Log in

Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data

Part 3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Theoretically, simulated kinetic data were used to evaluate the performance of the linear, cubic spline and Bezier mathematic interpolations (in comparison with the physically meaningful tangential area-proportional interpolation) in case of the complex kinetics involving two independent processes with different degrees of overlapping. The Bezier interpolation exhibited best performance; the linear interpolation performed significantly worse than the two other ones. In general, the data distortions caused by application of the mathematic interpolations do not significantly influence the model-free kinetic parameters—apparent activation energy and pre-exponential factor; errors below 2% occurred even for the most extremely distorted data. On the other hand, the integrated peak area and the model-based parameters such as kinetic exponents and the complexity ratio can be significantly influenced by the interpolations-caused data distortions, with the associated errors being in the order of tenths of percent. Nevertheless, the distortions associated with the choice of the thermokinetic interpolation were found to not affect the thermal stability predictions for the complex kinetic processes; only the precise predictions based on the mid-range degrees of conversion (e.g., controlled preparation of glass–ceramics) can be significantly affected by the incorrect interpolation of the thermokinetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  2. Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.

    Google Scholar 

  3. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  4. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881.

    Article  CAS  Google Scholar 

  5. Takhor RL. In: Hench LL, Freiman SW, editors. Advances in nucleation and crystallization of glasses. Columbus: Amer. Ceram. Soc.; 1971. p. 166–72.

    Google Scholar 

  6. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  7. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  8. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  9. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  10. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand Part A. 1966;70:4.

    Google Scholar 

  11. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  12. Vyazovkin S. Evaluation of the activation energy of thermally stimulated solidstate reactions under an arbitrary variation of the temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  13. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  14. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    Article  CAS  Google Scholar 

  15. Malek J. The kinetic-analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  16. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  17. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  CAS  PubMed  Google Scholar 

  18. Kitabayashi S, Koga N. Thermal decomposition of tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119:16188–99.

    Article  CAS  Google Scholar 

  19. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  22. Svoboda R. Linear baseline interpolation for single-process DSC data—Yes or no? Thermochim Acta. 2017;655:242–50.

    Article  CAS  Google Scholar 

  23. Svoboda R, Málek J. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data, part 1. J Therm Anal Calorim. 2016;124:1717–25.

    Article  CAS  Google Scholar 

  24. Svoboda R. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data, part 2. J Therm Anal Calorim. 2018;131:1889–97.

    Article  CAS  Google Scholar 

  25. Šesták J, Hubík P, Mareš JJ. Hot topics in thermal analysis and calorimetry, vol. 11. Berlin: Springer; 2017.

    Google Scholar 

  26. Schoenberg IJ. Contributions to the problem of approximation of equidistant data by analytic functions. Part A: on the problem of smoothing of graduation. A first class of analytic approximation formulae. Quart Appl Math. 1946;4:45–99.

    Article  Google Scholar 

  27. Höhne G, Hemminger W, Flammersheim HJ. Differential scanning calorimetry. Berlin: Springer; 2003.

    Book  Google Scholar 

  28. Nowicki L, Siuta D, Godala M. Determination of the chemical reaction kinetics using isothermal reaction calorimetry supported by measurements of the gas production rate: a case study on the decomposition of formic acid in the heterogeneous Fenton reaction. Thermochim Acta. 2017;653:62–70.

    Article  CAS  Google Scholar 

  29. Catauro M, Dell’Era A, Ciprioti SV. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2–CaO–P2O5 gel and ceramic materials. Thermochim Acta. 2016;625:20–7.

    Article  CAS  Google Scholar 

  30. Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4 center dot 2H(2)O. Thermochim Acta. 2015;610:29–36.

    Article  CAS  Google Scholar 

  31. Grajales EJ, Alacron EA, Villa AL. Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis. Thermochim Acta. 2015;609:49–60.

    Article  CAS  Google Scholar 

  32. Begovic NN, Stojanovic NN, Ostojic SB, Radulovic AM, Blagojevic VA, Simonovic B, Minic DM. Thermally induced polymerization of binuclear [Ni-2(en)(2)(H2O)(6)(pyr)]center dot 4H(2)O complex. Thermochim Acta. 2015;607:82–91.

    Article  CAS  Google Scholar 

  33. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng. 1939;135:416–42.

    Google Scholar 

  34. Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  35. Avrami M. Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Article  Google Scholar 

  36. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Article  Google Scholar 

  37. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex processes. J Therm Anal Calorim. 2013;111:1045–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under Project No. 17-11753S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, R. Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data. J Therm Anal Calorim 136, 1307–1314 (2019). https://doi.org/10.1007/s10973-018-7738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7738-1

Keywords

Navigation