Skip to main content
Log in

Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the investigation of Al2O3/PAG nanolubricant performance for a compact vehicle mobile air conditioning (MAC) system. The Al2O3/PAG nanolubricant in this study is prepared by using two-step preparation method and stabilized using 4-Step UV–Vis Spectral Absorbency Analysis. An enhancement in the coefficient of performance (COP), reduction in compressor work, and enhancement in the cooling capacity of MAC employing Al2O3/PAG nanolubricant are recorded up to 31%, 26% and 32%, respectively, for 0.010% volume concentration. The current MAC performance is compared with MAC employing SiO2/PAG nanolubricant from previous study. The comparison shows that the Al2O3/PAG nanolubricant has better performance in term of cooling capacity, compressor work, and COP at an average of 6%, 8%, and 33%, respectively. Therefore, the finding from this study suggests Al2O3/PAG nanolubricant with a volume concentration of 0.010% as an optimum and best performance nanolubricant for MAC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

ANOVA:

Analysis of variance

ASHRAE:

American society of heating, refrigerating and air conditioning engineers

COP:

Coefficient of performance

C p :

Specific heat for water at 303 to 313 K

TEM:

Transmission electron microscopy

MAC:

Mobile air conditioning

m :

Mass (kg)

\(\dot{m}\) :

Water mass flow rate

\(\dot{m}_{\text{r}}\) :

Refrigerant mass flow rate

MO:

Mineral oil

m RC :

Initial refrigerant charge (g)

n :

Number of population

PAG:

Polyalkylene glycol

\(q_{\text{L}}\) :

Heat absorb, kJ kg−1

\(\dot{Q}_{\text{L}}\) :

Cooling capacity (kW) at refrigerant side

\(\dot{Q}_{\text{w}}\) :

Cooling capacity of (kW) from the calorimetric bath calculation

rpm:

Revolution per minute

RSE:

Relative standard error (%)

S err :

Standard error

SAE:

Society of automotive engineers

SS:

Sum of squares

T :

Temperature, K

T in :

Average temperature for water inlet

T out :

Average temperature for water outlet

TXV:

Thermostatic expansion valve

TEM:

Transmission electron microscopy

VCRS:

Vapor compression refrigeration cycle

w in :

Compressor work, kJ kg−1

\(\phi\) :

Volume concentration (%)

\(\phi_{\text{o}}\) :

Initial concentration

\(\phi_{\text{r}}\) :

Concentration ratio

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Standard deviation for sample

L :

Lubricant

P :

Nanoparticle

References

  1. Agency IE. Key world energy statistics. 20th ed. Paris: International Energy Agency; 2017.

    Google Scholar 

  2. Rugh JP, Hendricks TJ, Koram K. Effect of solar reflective glazing on Ford Explorer climate control, fuel economy, and emissions. SAE Technical Paper 2001-01-3077; 2001.

  3. Bevilacqua OM. Effect of air conditioning on regulated emissions for in-use vehicles. Atlanta, GA: Clean Air Vehicle Technology Center, Oakland, CA, Phase I Final Report Prepared for Coordinating Research Council, Inc.; 1999.

  4. Rugh J, Hovland V, Andersen SO, editors. Significant fuel savings and emission reductions by improving vehicle air conditioning. Mobile air conditioning summit, Washington, DC: SAE; 2004.

  5. Sukri M, Musa M, Senawi M, Nasution H. Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle. Energy Effic. 2015;8(6):1201–29.

    Article  Google Scholar 

  6. Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf. 2016;73:75–83.

    Article  CAS  Google Scholar 

  7. Hamid KA, Azmi WH, Mamat R, Usri NA, Najafi G. Effect of temperature on heat transfer coefficient of titanium dioxide in ethylene glycol-based nanofluid. J Mech Eng Sci. 2015;8:1367–75.

    Article  CAS  Google Scholar 

  8. Abdolbaqi MK, Sidik NAC, Aziz A, Mamat R, Azmi WH, Yazid MNAWM, et al. An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;77:22–32.

    Article  CAS  Google Scholar 

  9. Yusri IM, Mamat R, Najafi G, Razman A, Awad OI, Azmi WH, et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew Sustain Energy Rev. 2017;77:169–81.

    Article  CAS  Google Scholar 

  10. Zakaria I, Azmi WH, Mamat AMI, Mamat R, Saidur R, Abu Talib SF, et al. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrog Energy. 2016;41(9):5096–112.

    Article  CAS  Google Scholar 

  11. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R. Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transf. 2016;76:285–93.

    Article  CAS  Google Scholar 

  12. Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system: a review. Renew Sustain Energy Rev. 2017;69:415–28.

    Article  CAS  Google Scholar 

  13. Pillay DS, Sidik NAC. Tribological properties of biodegradable nano-lubricant. J Adv Res Fluid Mech Therm Sci. 2017;33(1):1–13.

    Google Scholar 

  14. Xian HW, Sidik NAC, Aid SR, Ken TL, Asako Y. Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications. J Adv Res Fluid Mech Therm Sci. 2018;45(1):1–13.

    Google Scholar 

  15. Kean TH, Sidik NAC, Asako Y, Ken TL, Aid SR. Numerical study on heat transfer performance enhancement of phase change material by nanoparticles: a review. J Adv Res Fluid Mech Therm Sci. 2018;45(1):55–63.

    Google Scholar 

  16. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Sharma KV. Thermo-physical properties of Al2O3–SiO2/PAG composite nanolubricant for refrigeration system. Int J Refrig. 2017;80:1–10.

    Article  CAS  Google Scholar 

  17. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig. 2018;89:11–21.

    Article  CAS  Google Scholar 

  18. Sharif MZ, Azmi WH, Mamat R, Shaiful AIM. Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants: a review. Int Commun Heat Mass Transf. 2018;92:56–63.

    Article  CAS  Google Scholar 

  19. Sabareesh RK, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems: an experimental investigation. Int J Refrig. 2012;35(7):1989–96.

    Article  CAS  Google Scholar 

  20. Kumar DS, Elansezhian R. ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment. Front Mech Eng. 2014;9(1):75–80.

    Article  Google Scholar 

  21. Lou JF, Zhang H, Wang R. Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Adv Mech Eng. 2015;7(2):1–9.

    Article  Google Scholar 

  22. Kumar DS, Elansezhian R. Experimental study on Al2O3–R134a nano refrigerant in refrigeration system. Int J Mod Eng Res. 2012;2(5):3927–9.

    Google Scholar 

  23. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Zawawi NNM. Comparative study of thermo-physical properties of SiO2 and Al2O3 nanoparticles dispersed in PAG lubricant. Appl Therm Eng. 2017;116:823–32.

    Article  CAS  Google Scholar 

  24. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. Int J Refrig. 2016;70(Supplement C):93–102.

    Article  CAS  Google Scholar 

  25. Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf. 2014;59:30–8.

    Article  CAS  Google Scholar 

  26. Redhwan AAM, Azmi WH, Sharif MZ, Zawawi NNM. Thermal conductivity enhancement of Al2O3 and SiO2 nanolubricants for application in automotive air conditioning (AAC) system. In: MATEC Web of Conferences, vol. 90. 2016. p. 01051.

  27. Ali MKA, Xianjun H, Mai L, Qingping C, Turkson RF, Bicheng C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol Int. 2016;103:540–54.

    Article  CAS  Google Scholar 

  28. Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, et al. Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process. 2017;26:94–104.

    Article  CAS  Google Scholar 

  29. Soliman AMA, Abdel-Rahman AK, Ookawara S, editors. Theoretical investigation of vapor compression cycle performance using different nanomaterials additives. Conference on Advances in Mechanical Engineering; 2016; Yildiz Technical University, Istanbul, Turkey Journal of Thermal Engineering.

  30. Alawi OA, Sidik NAC, Kherbeet AS. Nanorefrigerant effects in heat transfer performance and energy consumption reduction: a review. Int Commun Heat Mass Transf. 2015;69:76–83.

    Article  CAS  Google Scholar 

  31. Sharif MZ. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. Dissertation, University Malaysia Pahang, Pekan, Pahang; 2016.

  32. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. Int J Refrig. 2017;75:204–16.

    Article  CAS  Google Scholar 

  33. Redhwan AAM, Azmi WH, Sharif MZ, Hagos FY, editors. Development of nanolubricant automotive air conditioning (AAC) test rig. MATEC Web of Conferences; 2016.

  34. ASHRAE. Standard 41.9-2000-Calorimeter Test Methods for Mass Flow Measurements of Volatile Refrigerants. 2000.

  35. Brown WL. Polyalkylene glycols. CRC Handb Lubr Tribol. 1993;3:253–67.

    Google Scholar 

  36. Dow. Material Safety Data Sheet. Ucon Refrigerant Lubricant 213; 2013.

  37. Chung SJ, Leonard JP, Nettleship I, Lee J-K, Soong Y, Martello DV, et al. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194(1):75–80.

    Article  CAS  Google Scholar 

  38. Sharif MZ, Azmi WH, Redhwan AAM, Zawawi NMM, editors. Preparation and stability of silicone dioxide dispersed in polyalkylene glycol based nanolubricants. MATEC Web of Conferences; 2016.

  39. Sharif MZ, Azmi WH, Redhwan AAM, Zawawi NNM, Mamat R. Improvement of nanofluid stability using 4-step UV-vis spectral absorbency analysis. J Mech Eng. 2017;4(2):233–47.

    Google Scholar 

  40. Lin L, Peng H, Ding G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl Therm Eng. 2015;91:163–71.

    Article  CAS  Google Scholar 

  41. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.

    Article  CAS  Google Scholar 

  42. Wu D, Zhu H, Wang L, Liu L. Critical issues in nanofluids preparation, characterization and thermal conductivity. Curr Nanosci. 2009;5(1):103–12.

    Article  CAS  Google Scholar 

  43. Habibzadeh S, Kazemi-Beydokhti A, Khodadadi AA, Mortazavi Y, Omanovic S, Shariat-Niassar M. Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route. Chem Eng J. 2010;156(2):471–8.

    Article  CAS  Google Scholar 

  44. Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys. 2009;9(2):128–31.

    Article  Google Scholar 

  45. Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51(11–12):2651–6.

    Article  CAS  Google Scholar 

  46. Celen A, Çebi A, Aktas M, Mahian O, Dalkilic AS, Wongwises S. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–40.

    Article  CAS  Google Scholar 

  47. Na BC, Chun KJ, Han D-C. A tribological study of refrigeration oils under HFC-134a environment. Tribol Int. 1997;30(9):707–16.

    Article  CAS  Google Scholar 

  48. Aldrich S. Safety Data Sheet. Aluminium Oxide; 2013.

  49. Zakaria I, Azmi WH, Mohamed WANW, Mamat R, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water–ethylene glycol mixture for proton exchange membrane fuel cell application. Int Commun Heat Mass Transf. 2015;61:61–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Universiti Malaysia Pahang (www.ump.edu.my) for financial supports given under RDU1603110. This research also supported by UMP Flagship Research Grant under RDU172204. The authors also thank to the research team from Automotive Engineering Centre (EAC) and Advanced Automotive Liquids Laboratory (A2LL), who provided insight and expertise that greatly assisted in the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Azmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redhwan, A.A.M., Azmi, W.H., Sharif, M.Z. et al. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. J Therm Anal Calorim 135, 1299–1310 (2019). https://doi.org/10.1007/s10973-018-7656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7656-2

Keywords

Navigation