Skip to main content
Log in

Experimental investigation of first and second laws in a direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, energy and entropy analysis of a residential-type direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid is evaluated experimentally. The hybrid nanofluid samples are prepared in the different volume ratios of Fe3O4/SiO2 (25:75, 50:50 and 75:25) and different volume fractions (500 ppm, 1000 ppm and 2000 ppm). The appropriate nanofluid samples for using as the working fluid of the collector are chosen based on the results of stability and optical properties of nanofluid. Then, outdoor thermal performance of collector is investigated using the experimental setup based on EN12975-2. Measurement of nanofluid optical properties using the spectrophotometry method shows that the extinction coefficient of 2000 ppm hybrid Fe3O4/SiO2 nanofluid is on average 10 cm−1 higher than that of the base fluid. Results of energy analysis display that the collector efficiency is increased by mass flow rate and volume fraction of nanofluid asymptotically. The asymptotic value is about 83% for 2000 ppm hybrid Fe3O4/SiO2 nanofluid. The findings indicate that the variation of exergy efficiency of a direct absorption solar collector with the volume fraction and mass flow rate is similar to energy efficiency. The enhancement of exergy efficiency is 66.4% for mass flow rates of 0.0225 kg s−1 by increasing the volume fraction from 0 to 2000 ppm. It is also observed that dimensionless entropy generation number is decreased by nanofluid volume fraction and by mass flow rate. The lowest entropy generation number is obtained in the mass flow rate of 0.0225 kg s−1 and the volume fraction of 2000 ppm. The variation of Bejan number by volume fraction shows that the contribution of pressure drop in entropy generation is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

a 1 :

Heat loss coefficient (w m−2 K−1)

a 2 :

Temperature dependence of heat loss coefficient (w m−2 K−1)

A :

Area of collector (m2)

C p :

Specific heat (J kg−1 K−1)

D h :

Hydraulic diameter (m)

G :

Incident solar radiation (w m−2 K−1)

h:

Heat transfer coefficient (w m−2)

H :

Height of collector (m)

k:

Thermal conductivity (w m−1 K−1)

K e :

Extinction coefficient (m−1)

K L :

Local loss coefficient

L :

Collector length (m)

m:

Mass flow rate (kg s−1)

P :

Pressure (Pa)

S:

Entropy (k J kg−1 K−1)

T :

Temperature (K)

T *m :

Reduced temperature difference

U :

Overall heat transfer coefficient (w m−2 K−1)

ν:

Velocity (m s−1)

α :

Absorptivity

β :

Tilt angle

η :

Efficiency

λ :

Wavelength (m)

μ :

Viscosity (kg m−3)

ρ :

Density (kg m−3)

τ :

Transmissivity

a, A:

Absorption

amb:

Ambient

bf:

Base fluid

e:

Extinction

f:

Fluid

F:

Friction

gen:

Generated

h:

Hydrolic

H:

Heat

i:

Inlet

L:

Loss

m:

Mean

o:

Outlet

hnf:

Hybrid nanofluid

nf:

Nanofluid

References

  1. International Energy Agency (IEA), Solar Energy Perspectives, 2011.

  2. Lu JP, Chow T, He W, Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Appl. Energy. 2007;84:222–37.

    Article  CAS  Google Scholar 

  3. Kamat PV. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem. 2007;111:2834–60.

    CAS  Google Scholar 

  4. Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. Wiley: London; 2013.

    Book  Google Scholar 

  5. Khanafer K, Vafai K. A review on the applications of nanofluids in solar energy field. Renew Energy. 2018;123:398–406.

    Article  CAS  Google Scholar 

  6. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  7. Minkowycz WJ, Sparrow EM, Abraham JP. Nano particle heat transfer and fluid flow. LLC: Taylor & Francis Group; 2013.

    Google Scholar 

  8. Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    Article  CAS  Google Scholar 

  9. Vakili M, Karami M, Delfani S, Khosrojerdi S. Experimental investigation and modeling of thermal radiative properties of f-CNTs nanofluid by artificial neural network with Levenberg– Marquardt algorithm. Int Commun Heat Mass Transf. 2016;78:224–30.

    Article  CAS  Google Scholar 

  10. Alim MA, Abdin Z, Saidur R, Hepbasli A, Khair MA, Rahim NA. Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build. 2013;66:289–96.

    Article  Google Scholar 

  11. Alim MA, Saidur R, Khairul MA, Nasrudin AR, Abdin Z. Performance analysis of a solar collector using nanofluids. Adv Mater Res. 2014;832:107–12.

    Article  Google Scholar 

  12. Mahian O, Kianifar A, Zeinali Heris S, Wongwises S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials. Int J Heat Mass Transf. 2014;78:1166–76.

    Article  CAS  Google Scholar 

  13. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int J Heat Mass Transf. 2014;78:64–75.

    Article  CAS  Google Scholar 

  14. Salavati Meibodi S, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126(2):617–25.

    Article  CAS  Google Scholar 

  15. Faizal M, Saidur R, Mekhilef S, Hepbasli A, Mahbubul IM. Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol Environ Policy. 2015;17(6):1457–73.

    Article  CAS  Google Scholar 

  16. Said Z, Saidur R, Rahim NA, Alim MA. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 2014;78:1–9.

    Article  Google Scholar 

  17. Said Z, Sabihaa MA, Saidurr R, Hepbaslii A, Rahim NA, Mekhilef S, Ward TA. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–53.

    Article  CAS  Google Scholar 

  18. Shojaeizadeh E, Veysi F. Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector. Appl Therm Eng. 2016;98:1116–29.

    Article  CAS  Google Scholar 

  19. Verma SK, Tiwari AK, Chauhan DS. Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Convers Manag. 2016;124:607–17.

    Article  CAS  Google Scholar 

  20. Parvin S, Nasrin R, Alim MA. Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int J Heat Mass Transf. 2014;71:386–95.

    Article  CAS  Google Scholar 

  21. Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S, Prasher R. Applicability of nanofluids in high flux solar collectors. J Renew Sustain Energy. 2011;3:023104.

    Article  CAS  Google Scholar 

  22. Gorji TB, Ranjbar AA. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Sol Energy. 2015;122:314–25.

    Article  Google Scholar 

  23. Gorji TB, Ranjbar AAA. numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol Energy. 2016;135:493–505.

    Article  CAS  Google Scholar 

  24. Gorji TB, Ranjbar AA. Thermal and exergy optimization of a nanofluid-based direct absorption solar collector. Renew Energy. 2017;106:274–87.

    Article  CAS  Google Scholar 

  25. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. J Heat Transf. 2015;137(6):061011.

    Article  CAS  Google Scholar 

  26. Shojaeizadeh E, Veysi F, Kamandi A. Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy Build. 2015;101:12–23.

    Article  Google Scholar 

  27. Faizal M, Saidur R, Mekhilef S, Hepbasli A, Mahbubul IM. Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technol Environ Policy. 2015;17(6):1457–73.

    Article  CAS  Google Scholar 

  28. Said Z, Saidur R, Rahim NA, Alim MA. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 2014;78:1–9.

    Article  Google Scholar 

  29. Said Z, Alim MA, Janajreh I. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid. IOP Conf Ser Mater Sci Eng. 2015;92:012015.

    Article  CAS  Google Scholar 

  30. Said Z, Saidur R, Sabiha MA, Hepbasli A, Rahim NA. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J Clean Prod. 2016;112(5):3915–26.

    Article  CAS  Google Scholar 

  31. Said Z, Saidur R, Rahim NA. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod. 2016;133:518–30.

    Article  CAS  Google Scholar 

  32. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  33. Sundara LS, Sharmab KV, Singha MK, Sousaa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—A review. Renew Sustain Energy Rev. 2017;68:185–98.

    Article  CAS  Google Scholar 

  34. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.

    Article  CAS  Google Scholar 

  35. Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod. 2018;190:169–92.

    Article  CAS  Google Scholar 

  36. Ranga Babu JA, Kiran Kumar K, Srinivasa Rao S. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017;77(551–56):5.

    Google Scholar 

  37. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018; 1–24.

  38. Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review. J Clean Prod. 2018;196:84–99.

    Article  CAS  Google Scholar 

  39. Bellos E, Said Z, Tzivanidis C. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Renew Sustain Energy Rev. 2018;26:105–15.

    Google Scholar 

  40. Minea AA, El-Maghlany WM. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew Energy. 2018;120:350–64.

    Article  CAS  Google Scholar 

  41. Azwadi CSN, Adamu IM, Jamil MM. Preparation methods and thermal performance of hybrid nanofluids. J Adv Rev Sci Res. 2016;24(1):13–23.

    Google Scholar 

  42. Afshari A, Akbari M, Toghraie D, Eftekhari YM. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Thermal Anal Calorim. 2018;132(2):1001–15.

    Article  CAS  Google Scholar 

  43. Shende R, Sundara R. Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells. 2015;140:9–16.

    Article  CAS  Google Scholar 

  44. Sani E, Di Ninni P, Colla L, Barison S, Agresti F. Optical properties of mixed nanofluids containing carbon nanohorns and silver nanoparticles for solar energy applications. J Nanosci Nanotechnol. 2015;15(5):3568–73.

    CAS  PubMed  Google Scholar 

  45. Khashan S, Dagher S, Al Omari S, Tit N, Elnajjar E, Mathew B, Hilal-Alnaqbi A. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications. Mater Res Express. 2017;4:055701.

    Article  CAS  Google Scholar 

  46. Bhalla V, Khullar V, Tyagi H. Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector. Renew Energy. 2018;123:616–26.

    Article  CAS  Google Scholar 

  47. Wang X, He Y, Chen M, Hu Y. ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors. Sol Energy Mater Sol Cells. 2018;179:185–93.

    Article  CAS  Google Scholar 

  48. Karami M, Akhavan-Bahabadi MA, Delfani S, Raisee M. Experimental investigation of CuO nanofluid based direct absorption solar collector for residential applications. Renew Sustain Energy Rev. 2015;52:793–801.

    Article  CAS  Google Scholar 

  49. Karami M, Bozorgi M, Delfani S, Akhavan-Behabadi MA. Empirical correlations for heat transfer in a silver nanofluid-based direct absorption solar collector. Sustain Energy Technol Assess. 2018;2:14–21.

    Google Scholar 

  50. Delfani S, Karami M, Akhavan Bahabadi MA. Experimental investigation on performance comparison of nanofluid based direct absorption and flat plate solar collectors. Int J Nano Dimens. 2016;7(1):85–96.

    CAS  Google Scholar 

  51. Delfani S, Karami M, Akhavan-Behabadi MA. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew Energy. 2016;87:754–64.

    Article  CAS  Google Scholar 

  52. Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S, Karami M. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Sol Energy. 2016;131:119–30.

    Article  CAS  Google Scholar 

  53. Karami M, Hosseini Pakdel SM, Delfani S, Akhavan-Behabadi M. A, Application of Fe3O4/Silica hybrid nanofluid as working fluid of direct absorption solar collector. Modares Mech Eng. 2018;18(2):37–44 (in Persian).

    Google Scholar 

  54. Karami M, Akhavan-Behabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells. 2014;121:114–8.

    Article  CAS  Google Scholar 

  55. Lenert A, Wang EN. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy. 2012;86:253–65.

    Article  CAS  Google Scholar 

  56. Thermal solar systems and components—solar collectors—Part 2: test methods. English version of DIN EN 12975-2: 2006-06.

  57. Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017;7:2317–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Karami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, M. Experimental investigation of first and second laws in a direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid. J Therm Anal Calorim 136, 661–671 (2019). https://doi.org/10.1007/s10973-018-7624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7624-x

Keywords

Navigation