Enhancement of vapor compression cycle performance using nanofluids

Experimental results

Abstract

Recently, Egypt is facing an energy problem due to the increase in consumption and population. There are two ways to face this issue; first, the world should be more interested in renewable energy resources and the second is the efficient use of energy. Refrigeration and air conditioning systems have a high rate of electrical power consumption. For that, the objective of the present work is to enhance the performance of the vapor compression cycle as well as to reduce the energy consumption resultantly. To achieve these goals, the performance of a vapor compression cycle with nanomaterials additives to the primary loop of refrigeration (refrigerant loop) is investigated experimentally. Mineral oil and polyol ester oil with Al2O3 nanomaterials additives are used to enhance the performance in the vapor compression cycle with R-143a refrigerant. The stability of nanofluids was first tested by using sedimentation test. The results showed that the optimum concentration for nanolubricant is 0.1% mass percentage. Results revealed that the refrigerant heat transfer coefficient increased by 22% maximum when nanofluids were used. Moreover, exergy efficiency increases by 20% when mineral oil and Al2O3 nanoparticles were used. The experimental results indicate that R-134a and mineral oil with Al2O3 nanoparticles enhance the vapor compression cycle performance by 22.5% theoretically and 10% actually with 10% less energy consumption. These results were obtained with 0.1% mass fraction of nanolubricant oil. Moreover, experimental results indicate that the polyester oil with Al2O3 nanoparticles mixture has better performance than mineral oil with Al2O3 nanoparticles mixture by 7.5% in theoretical COP and 19.5% in actual COP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Abbreviations

As:

The surface area of evaporator coil area (m2)

C w :

Water specific heat (kJ kg−1 K−1)

C p :

Specific heat (kJ kg−1 K−1)

h :

The coefficient of heat transfer (W m−2 K−1)

h 1–4 :

Enthalpy of the refrigerant at different locations of the cycle (kJ kg−1)

h w :

Heat transfer coefficient of water (W m−2 K−1)

h fg :

Latent heat of vaporization (kJ kg−1)

k :

Thermal conductivity (Wm−1 K−1)

m w :

Mass of water (cooling load) (kg)

q :

Heat flux (W m−2)

q c :

Heat removed from refrigerant (kJ kg−1)

q e :

Heat added to refrigerant (refrigeration effect) (kJ kg−1)

s 1–4 :

The entropy of refrigerant at different locations of the cycle (kJ kg−1)

T :

Temperature (K)

T s :

The surface temperature of evaporator coil (K)

T :

Average water temperature (K)

ΔTw :

Water temperature difference

w :

Compressor work (kJ kg−1)

w in :

Work input (kJ kg−1)

\(X_{{{\text{n}},{\text{o}}}}\) :

Nanoparticle/lubricant suspension concentration

Ag:

Silver

Al:

Aluminum

Au:

Gold

Al2O3 :

Aluminum oxide

CO2 :

Carbon dioxide

Cu:

Copper

CuO:

Copper oxide

Fe:

Iron

SiO2 :

Silicon dioxide

TiO:

Titanium oxide

TiO2 :

Tanium dioxide

\(\rho\) :

Density (kg m−3)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\varOmega\) :

Nanomaterial + lubricant oil mixture concentration

\(\eta_{\text{x}}\) :

Exergy efficiency (%)

Фv :

The volume fraction of nanomaterials

\(\omega_{\text{n}}\) :

Nanoparticle mass fraction in the nanoparticle–lubricant mixture

Ѱ:

Specific exergy

\(\psi_{\text{n}}\) :

Nanovolume mass fraction in the nanoparticle–lubricant mixture

Σ:

Surface tension

bf:

Base fluid

c:

Cool

el:

Electric

h:

Heat

l:

Liquid

g:

Gas

n:

Nanoparticle

o:

Oil

r:

Refrigerant

n,o:

Nanoparticle with oil

r,o:

Refrigerant with oil

r,n,o:

Refrigerant with nanoparticle and oil

COP:

The coefficient of performance

CNTs:

Carbon nanotubes

MWCNT:

Multi-wall carbon nanotubes

POE:

Polyolester oil

WN:

With using nanoparticle

WON:

Without using nanoparticles

VCC:

The vapor compression cycle

NPs:

Nanoparticles

References

  1. 1.

    Nadooshan AA, Esfe MH, Afrand M. Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim. 2018;131:2741–8.

    Article  CAS  Google Scholar 

  2. 2.

    Lin L, Peng H, Chang Z, Ding G. Experimental research on degradation of nanolubricant: refrigerant mixture during continuous alternation processes of Recherche expérimentale sur la dégradation d’ un mélange nanolubrifiant-frigorigène durant les processus d’ alternance continue de con. Int J Refrig. 2017;76:97–108. https://doi.org/10.1016/j.ijrefrig.2016.12.021.

    Article  CAS  Google Scholar 

  3. 3.

    Rashidi S, Mahian O, Languri EM. Applications of nano fl uids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  4. 4.

    Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nano fl uids: a comprehensive review. Renew Sustain Energy Rev. 2018;82:3656–69. https://doi.org/10.1016/j.rser.2017.10.097.

    Article  CAS  Google Scholar 

  5. 5.

    Sharif MZ, Azmi WH, Mamat R, Shaiful AIM. Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants: a review. Int Commun Heat Mass Transf. 2018;92:56–63. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.012.

    Article  CAS  Google Scholar 

  6. 6.

    Park K, Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build. 2007;39:1061–4.

    Article  Google Scholar 

  7. 7.

    Bartelt K, Park Y, Liu L, Jacobi A. Flow-boiling of R-134a/POE/CuO nanofluids in a horizontal tube. In Proceedings of the International Refrigeration and Air Conditioning Conference. Indiana: West Lafayette; 2008.

  8. 8.

    Peng H, Ding G, Jiang W, Hu H, Gao Y. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube Chute de pression due au frottement d’ un nanofluide fonde ` ne en e ´ bullition en e ´ coulement a ` l’ inte ´ rieur sur. Int J Refrig. 2009;32:1756–64. https://doi.org/10.1016/j.ijrefrig.2009.06.005.

    Article  CAS  Google Scholar 

  9. 9.

    Bartelt K, Park Y, Jacobi A. Flow-boiling of R-134a/POE/CuO nanofluids in a horizontal tube. Int Refrig Air Cond Conf. 2008;1:9.

    Google Scholar 

  10. 10.

    Trisaksri V, Wongwises S. International journal of heat and mass transfer nucleate pool boiling heat transfer of TiO2–R141b nanofluids. Int J Heat Mass Transf. 2009;52:1582–8. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041.

    Article  CAS  Google Scholar 

  11. 11.

    Lin L, Peng H, Chang Z, Ding G. Experimental investigation on TiO2 nanoparticle migration from refrigerant–oil mixture to lubricating oil during refrigerant dryout Étude expérimentale sur la migration des nanoparticules de TiO2 depuis un mélange frigorigène-huile vers une huile lubr. Int J Refrig. 2017;77:75–86. https://doi.org/10.1016/j.ijrefrig.2017.02.026.

    Article  CAS  Google Scholar 

  12. 12.

    Ajayi OO, Ibia DE, Ogbonnaya M, Attabo A, Agarana MC. CFD analysis of nanorefrigerant through adiabatic capillary tube of vapour compression refrigeration system. Procedia Manuf. 2017;7:688–695.

    Article  Google Scholar 

  13. 13.

    Yang D, Sun B, Li H, Zhang C, Liu Y. International journal of heat and mass transfer comparative study on the heat transfer characteristics of nano-refrigerants inside a smooth tube and internal thread tube. Int J Heat Mass Transf. 2017;113:538–43. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.069.

    Article  CAS  Google Scholar 

  14. 14.

    Henderson K, Park Y, Liu L, Jacobi AM. International journal of heat and mass transfer flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf. 2010;53:944–51. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026.

    Article  CAS  Google Scholar 

  15. 15.

    Babu AM, Nallusamy S, Rajan K. Experimental analysis on vapour compression refrigeration system using nanolubricant with HFC-134a refrigerant. Nano Hybrids. 2016;9:33–43.

    Article  Google Scholar 

  16. 16.

    Peng H, Ding G, Hu H, Jiang W. International journal of thermal sciences influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant e oil mixture. Int J Therm. 2010;49:2428–38. https://doi.org/10.1016/j.ijthermalsci.2010.06.025.

    Article  CAS  Google Scholar 

  17. 17.

    Peng H, Ding G, Hu H, Jiang W, Zhuang D. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles ´ ristiques du transfert de chaleur lors de l’ e ´ bullition Caracte ´ e ´ e d’ un me ´ lange frigorige ` ne/huile aux libre nucle nanoparticul. Int J Refrig. 2010;33:347–58. https://doi.org/10.1016/j.ijrefrig.2009.11.007.

    Article  CAS  Google Scholar 

  18. 18.

    Peng H, Ding G, Hu H, Jiang W. International journal of heat and mass transfer effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles. Int J Heat Mass Transf. 2011;54:1839–50. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.035.

    Article  CAS  Google Scholar 

  19. 19.

    Kedzierski MA. Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer with extensive measurement and analysis details. Technical Note (NIST TN)-1663. 2010.

  20. 20.

    Kedzierski MA. R134a/Al2O3 nanolubricant mixture pool boiling on a rectangular finned surface. J Heat Transf. 2016;134:121501.

    Article  CAS  Google Scholar 

  21. 21.

    Kedzierski MA. Effect of diamond nanolubricant on R134a pool boiling heat transfer. J Heat Transf. 2016;134:1–8.

    Google Scholar 

  22. 22.

    Sun B, Yang D. International journal of heat and mass transfer experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube. Int J Heat Mass Transf. 2013;64:559–66. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.031.

    Article  CAS  Google Scholar 

  23. 23.

    Redhwan AAM, Azmi WH, Najafi G, Sharif MZ, Zawawi NNM. Application of response surface methodology in optimization of automotive air-conditioning performance operating with SiO2/PAG nanolubricant. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7539-6.

    Article  Google Scholar 

  24. 24.

    Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Yusof TM. Performance analysis of SiO2/PAG nanolubricant Analyse de la performance du nanolubrifiant SiO2/PAG dans un système de conditionnement d’ air automobile. Int J Refrig. 2017;75:204–16. https://doi.org/10.1016/j.ijrefrig.2017.01.004.

    Article  CAS  Google Scholar 

  25. 25.

    Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7477-3.

    Article  Google Scholar 

  26. 26.

    Bi Shengshan, Shi L. Experimental investigation of a refrigerator with a nanorefrigerant. J Tsinghua Univ (Sci Tech). 2007;47:1999–2002.

    Google Scholar 

  27. 27.

    Bi S, Shi L, Zhang L. Application of nanoparticles in domestic refrigerators. Appl Therm Eng. 2008;28:1834–43.

    Article  CAS  Google Scholar 

  28. 28.

    Jwo C, Jeng L, Teng T, Chang H, Jwo C. Effects of nanolubricant on performance of hydrocarbon refrigerant system. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2015;27:1473–7.

    Article  CAS  Google Scholar 

  29. 29.

    Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers Manag. 2011;52:733–7. https://doi.org/10.1016/j.enconman.2010.07.052.

    Article  CAS  Google Scholar 

  30. 30.

    Abdel-Hadi EA-H, Taher SH, Torki AHM, Hamad SS. Heat transfer analysis of vapor compression system using nano CuO-R134a. Int Conf Adv Mater Eng. 2011;15:80–4.

    Google Scholar 

  31. 31.

    Subramani N, Prakash MJ. Experimental studies on a vapour compression system using nanorefrigerants. Int J Eng Sci Technol. 2011;3:95–102.

    Google Scholar 

  32. 32.

    Kumar DS, Elansezhian RD. Experimental study on Al2O3-R134a nano refrigerant in refrigeration system. Int J Mod Eng Res. 2012;2:3927–9.

    Google Scholar 

  33. 33.

    Sabareesh RK, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems e An experimental investigation Application des nanoparticules de TiO2 en tant que lubrifiant ´ mes frigorifiques a ` compression de et additif dans le. Int J Refrig. 2012;35:1989–96. https://doi.org/10.1016/j.ijrefrig.2012.07.002.

    Article  CAS  Google Scholar 

  34. 34.

    Javadi FS, Saidur R. Energetic, economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia. Energy Convers Manag. 2013;73:335–9. https://doi.org/10.1016/j.enconman.2013.05.013.

    Article  CAS  Google Scholar 

  35. 35.

    Poggi F, Macchi-tejeda H, Leducq D, Bontemps A. Refrigerant charge in refrigerating systems and strategies of charge reduction ` ne dans les syste ` mes frigorifiques et Charge en frigorige ´ gies de re ´ duction de charge strate. Int J Refrig. 2008;31:353–70.

    Article  Google Scholar 

  36. 36.

    Wang K, Eisele M, Hwang Y, Radermacher R. Review of secondary loop refrigeration systems ` me frigorifiques a ` boucle secondaire: tour d’ horizon Syste. Int J Refrig. 2017;33:212–34. https://doi.org/10.1016/j.ijrefrig.2009.09.018.

    Article  CAS  Google Scholar 

  37. 37.

    Akel A, Orlando A, Gómez C, Pedone E, Filho B, Alberto J, et al. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.06.126.

    Article  Google Scholar 

  38. 38.

    Soliman AMA, Abdelrahman AK, Taher SH, Ookawara S. Performance enhancement of vapor compression cycle using nano materials. In: Proceedings of the 4th international conference on renewable energy research and applications. Palermo; 2015. p. 821–6.

  39. 39.

    Maré T, Halelfadl S, Sow O, Estellé P, Duret S, Bazantay F. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp Therm Fluid Sci 2011;35:1535–43. http://www.sciencedirect.com/science/article/pii/S0894177711001397.

  40. 40.

    Sarkar J. Performance of nano fluid-cooled shell and tube gas cooler in transcritical CO2 refrigeration systems. Appl Therm Eng. 2011;31:2541–8. https://doi.org/10.1016/j.applthermaleng.2011.04.019.

    Article  CAS  Google Scholar 

  41. 41.

    Kumaresan V, Khader SMA, Karthikeyan S, Velraj R. International journal of heat and mass transfer convective heat transfer characteristics of CNT nanofluids in a tubular heat exchanger of various lengths for energy efficient cooling/heating system. Int J Heat Mass Transf. 2013;60:413–21. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.021.

    Article  CAS  Google Scholar 

  42. 42.

    Soliman AMA, Taher SH, Abdel-Rahman AK, Ookawara S. Performance enhancement of vapor compression cycle using nano materials. In: 2015 International conference on renewable energy research and applications; 2015, p. 821–6. https://doi.org/10.1109/icrera.2015.7418526.

  43. 43.

    Gill J, Singh J, Ohunakin OS, Adelekan DS. Energy analysis of a domestic refrigerator system with ANN using LPG/TiO2–lubricant as replacement for R134a. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7327-3.

    Article  Google Scholar 

  44. 44.

    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. J Therm Energy Gener Transp storage Convers. 1998;11:151–170.

    CAS  Google Scholar 

  45. 45.

    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  46. 46.

    Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571. https://doi.org/10.1063/1.1700493.

    Article  CAS  Google Scholar 

  47. 47.

    Jackman DL. Prediction of nucleate pool boiling heat transfer coefficients of refrigerant-oil mixtures. J Heat Trans. 2016. https://doi.org/10.1115/1.3246632.

  48. 48.

    Kedzierski MA, Kaul MP. Horizontal nucleate flow boiling heat transfer coefficient measurements and visual observations for R12, R134a, and R134a/ester lubricant mixtures. In: Proceedings of the 6th international symposium on transport; 1993.

  49. 49.

    Esfe MH. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids: experimental investigation, predicting, and data assessment. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6903-2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Egyptian Ministry of Higher Education (MoHE) for funding this work and the Egypt-Japan University of Science and Technology (E-JUST) for providing the equipment and tools required for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aly M. A. Soliman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soliman, A.M.A., Abdel Rahman, A.K. & Ookawara, S. Enhancement of vapor compression cycle performance using nanofluids. J Therm Anal Calorim 135, 1507–1520 (2019). https://doi.org/10.1007/s10973-018-7623-y

Download citation

Keywords

  • Refrigeration
  • Vapor compression
  • COP
  • Nanofluids
  • Experimental analysis