Skip to main content
Log in

Treating bituminous coal with ionic liquids to inhibit coal spontaneous combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Coal spontaneous combustion (CSC) is an extremely complex physical and chemical reaction between coal and oxygen, and it results in the gradual accumulation of thermal energy that eventually produces conditions that are favorable for combustion. Ionic liquids (ILs) inhibit coal oxidation and reduce the amount of heat that is produced. A synchronous thermal analyzer was used to examine the effects of imidazolium-based ILs on bituminous coal from two sources. The results revealed that with the anion [BF4], the inhibiting effect of [BMIM]+ was stronger than that of [EMIM]+. Moreover, with the cation [BMIM]+, the inhibiting effects of [BF4] were stronger than that of [I] and [NO3]. The inhibiting effects of the ILs on CSC were estimated using the Ozawa–Flynn–Wall method, which relates the apparent activation energy to the degree of conversion. The inhibiting effect of [BMIM][BF4] offers a basis for effectively preventing CSC and is favorable for universal application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (min−1)

E a :

Apparent activation energy (J mol−1)

\(f(\alpha )\) :

Differential mechanism function

\(G(\alpha )\) :

Integral mechanism function

\(P(u)\) :

Approximation of the integral temperature (K)

R :

Universal gas constant (8.314 J mol−1 K−1)

r 2 :

Correlation degree

T :

Absolute temperature (K)

T 1 :

Pyrolysis temperature (°C)

T 2 :

Ignition temperature (°C)

T 3 :

Burnout temperature (°C)

t :

Time (min)

\(\alpha\) :

Conversion (%)

\(\beta\) :

Heating rate (°C min−1)

References

  1. British Petroleum Public Limited Company (BP). BP Energy Outlook 2016 edition. http://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf (BP 2016).

  2. Liu Z, Guan D, Crawford-Brown D, Zhang Q, He K, Liu J. Energy policy: a low-carbon road map for China. Nature. 2013;500:143–5.

    Article  CAS  PubMed  Google Scholar 

  3. Stracher GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol. 2004;59:7–17.

    Article  CAS  Google Scholar 

  4. Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature. 2015;524:335–8.

    Article  CAS  PubMed  Google Scholar 

  5. Liu Z. National carbon emissions from the industry process: production of glass, soda ash, ammonia, calcium carbide and alumina. Appl Energy. 2016;166:239–44.

    Article  CAS  Google Scholar 

  6. Zhang M, Guo Y. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution. Appl Energy. 2013;111:142–52.

    Article  CAS  Google Scholar 

  7. Demirbas A. Methane hydrates as potential energy resource: part 1–Importance, resource and recovery facilities. Energ Convers Manag. 2010;51:1547–61.

    Article  CAS  Google Scholar 

  8. Wang J, Fu C. Thermodynamic analysis of a solar-hybrid trigeneration system integrated with methane chemical-looping combustion. Energy Convers Manag. 2016;117:241–50.

    Article  CAS  Google Scholar 

  9. Babich IV, Moulijn JA. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel. 2003;82:607–31.

    Article  CAS  Google Scholar 

  10. To TQ, Shah K, Tremain P, Simmons BA, Moghtaderi B, Atkin R. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel. 2017;202:296–306.

    Article  CAS  Google Scholar 

  11. Wijaya N, Zhang L. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal. Energy Fuels. 2011;25:1–16.

    Article  CAS  Google Scholar 

  12. Vasireddy S, Morreale B, Cugini A, Song C, Spivey JJ. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Environ Sci. 2011;4:311–45.

    Article  Google Scholar 

  13. Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2012;15:550–83.

    Article  CAS  Google Scholar 

  14. Rogers RD, Seddon KR. Ionic liquids-solvents of the future? Science. 2003;302:792.

    Article  PubMed  Google Scholar 

  15. Anderson JL, Ding J, Welton T, Armstrong DW. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc. 2002;124:14247–54.

    Article  CAS  PubMed  Google Scholar 

  16. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.

    Article  CAS  PubMed  Google Scholar 

  17. Holbrey JD, Seddon KR. Ionic liquids. Clean Technol Environ. 1999;1:223–36.

    Article  Google Scholar 

  18. Ma M. Study on the dissolution, swelling and rheological properties of coal in ionic liquids under mild conditions. Master thesis, Henan Polytechnic University, Hennan Province, PR China 2009 (in Chinese).

  19. Geng S, Liu Y. Application of ionic liquid [BMIm]BF4 in swelling pretreatment of Shenhua coal. Coal Convers. 2010;33:35–8 (in Chinese).

    CAS  Google Scholar 

  20. Painter P, Pulati N, Cetiner R, Sobkowiak M, Mitchell G, Mathews J. Dissolution and dispersion of coal in ionic liquids. Energy Fuels. 2010;24:1848–53.

    Article  CAS  Google Scholar 

  21. Painter P, Cetiner R, Pulati N, Sobkowiak M, Mathews J. Dispersion of liquefaction catalysts in coal using ionic liquids. Energy Fuels. 2010;24:3086–92.

    Article  CAS  Google Scholar 

  22. Pulati N, Sobkowiak M, Mathews JP, Painter P. Low-temperature treatment of Illinois No. 6 coal in ionic liquids. Energy Fuels. 2012;26:3548–52.

    Article  CAS  Google Scholar 

  23. Hunt PA. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J Phys Chem B. 2007;111:4844–53.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JW, Kim D, Ra CS, Han GB, Park NK, Lee TJ, Kang M. Synthesis of ionic liquids based on alky imidazolium salts and their coal dissolution and dispersion properties. J Ind Eng Chem. 2014;20:372–8.

    Article  CAS  Google Scholar 

  25. Shah K, Atkin R, Stanger R, Wall T, Moghtaderi B. Interactions between vitrinite and inertinite-rich coals and the ionic liquid-[bmim][Cl]. Fuel. 2014;119:214–8.

    Article  CAS  Google Scholar 

  26. Cummings J, Kundu S, Tremain P, Moghtaderi B, Atkin R, Shah K. Investigations into physicochemical changes in thermal coals during low-temperature ionic liquid treatment. Energy Fuels. 2015;29:7080–8.

    Article  CAS  Google Scholar 

  27. Wang L, Xu Y, Jiang S, Yu M, Chu T, Zhang W, Wu Z, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf Sci. 2012;50:1528–34.

    Article  Google Scholar 

  28. Zhang W, Jiang S, Wang K, Wang L, Wu Z, Kou L, Ju X. Study on coal spontaneous combustion characteristic structures affected by ionic liquids. Proc Eng. 2011;26:480–5.

    Article  CAS  Google Scholar 

  29. Cummings J, Shah K, Atkin R, Moghtaderi B. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel. 2015;143:244–52.

    Article  CAS  Google Scholar 

  30. Cummings J, Tremain P, Shah K, Heldt E, Moghtaderi B, Atkin R. Modification of lignites via low temperature ionic liquid treatment. Fuel Process Technol. 2017;155:51–8.

    Article  CAS  Google Scholar 

  31. Li R. Green solvent: synthesis and application of ionic liquids. Beijing: Chemical Industry Press; 2004 (in Chinese).

    Google Scholar 

  32. Qi Y, Verheyen TV, Tikkoo T, Vijayaraghavan R, MacFarlane DR, Chaffee AL. High solubility of Victorian brown coal in ‘distillable’ ionic liquid DIMCARB. Fuel. 2015;158:23–34.

    Article  CAS  Google Scholar 

  33. Serageldin MA, Pan WP. Coal: kinetic analysis of thermogravimetric data. Thermochim Acta. 1983;71:1–14.

    Article  CAS  Google Scholar 

  34. Hu R. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008 (in Chinese).

    Google Scholar 

  35. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  36. Deng J, Xiao Y, Li Q, Lu J, Wen H. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel. 2015;157:261–9.

    Article  CAS  Google Scholar 

  37. Zhang Y, Guo Y, Cheng F, Yan K, Cao Y. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta. 2015;614:137–48.

    Article  CAS  Google Scholar 

  38. Benfell KE, Beamish BB, Rodgers KA. Thermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim Acta. 1996;286:67–74.

    Article  Google Scholar 

  39. Kizgut S, Yilmaz S. Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis. Fuel Process Technol. 2004;85:103–11.

    Article  CAS  Google Scholar 

  40. Xiao Y, Lü HF, Huang AC, Deng J, Shu CM. A new numerical method to predict the growth temperature of spontaneous combustion of 1/3 coking coal. Appl Therm Eng. 2018;131:221–9.

    Article  CAS  Google Scholar 

  41. Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3:5192–200.

    Article  CAS  Google Scholar 

  42. Xiao Y, Ren SJ, Deng J, Shu CM. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel. 2018;227:325–33.

    Article  CAS  Google Scholar 

  43. Wang K, Deng J, Zhang YN, Wang CP. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG–FTIR and in situ IR analysis. J Therm Anal Calorim. 2018;132:591–8.

    Article  CAS  Google Scholar 

  44. Aki SNVK, Brennecke JF, Samanta A. How polar are room-temperature ionic liquids? Chem Commun. 2001;5:413–4.

    Article  CAS  Google Scholar 

  45. Hanke CG, Johansson A, Harper JB, Lynden-Bell RM. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study. Chem Phys Lett. 2003;374:85–90.

    Article  CAS  Google Scholar 

  46. Deng J, Bai ZJ, Xiao Y, Shu CM. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J Therm Anal Calorim. 2018.

  47. Qi X, Li Q, Zhang H, Xin H. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J Energy Inst. 2017;90:544–55.

    Article  CAS  Google Scholar 

  48. Lin WC, Yu WL, Liu SH, Huang SY, Hou HY, Shu CM. Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. J Therm Anal Calorim. 2018;133:683–93.

    Article  CAS  Google Scholar 

  49. Deng J, Wang K, Zhang Y, Yang H. Study on the kinetics and reactivity at the ignition temperature of Jurassic coal in North Shaanxi. J Therm Anal Calorim. 2014;118:417–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Frank Oreovicz (Retired) at Purdue University (West Lafayette, Indiana, USA) for the brilliant modifications. This work was sponsored by the National Natural Science Foundation of China (No. 5120-4136), the China Postdoctoral Science Foundation (No. 2016-M-590963), and the Industrial Science and Technology Project of Shaanxi Province, China (No. 2016-GY-192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Lü, HF., Yi, X. et al. Treating bituminous coal with ionic liquids to inhibit coal spontaneous combustion. J Therm Anal Calorim 135, 2711–2721 (2019). https://doi.org/10.1007/s10973-018-7600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7600-5

Keywords

Navigation