Skip to main content
Log in

Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current investigation has presented a new synthesis technique to prepare pentaethylene glycol-treated graphene nanoplatelets (PEG-GnP) and pentaethylene glycol thermally treated graphene (PEG-TGr). The covalently functionalized (PEG-GnP and PEG-TGr) at various mass concentrations were dispersed in distilled water by ultrasonication for preparing nanofluids. The functionalization process effectiveness was established by using the surface characterization and morphology analysis with FTIR, Raman spectroscopy, FE-SEM, and TEM. The thermo-physical properties and stability of functionalized nanofluids were investigated utilizing numerous measuring devices. Dispersion stabilities of the functionalized nanofluids were observed for a long period of time (30 days). Water-based functionalized nanofluids revealed very Newtonian behavior with the increment in the experimental values of dynamic viscosity as temperature decreases and mass concentration of sample increases. Thermal conductivity of GnP and TGr dispersed in distilled water nanofluids show the enhancement of 32 and 31%, respectively, at 50 °C and 0.1% mass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotubes

DMF:

Dimethylformamide

DSC:

Differential scanning calorimeter

DW:

Distilled water

EG:

Ethylene glycol

FE-SEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

GnPs:

Graphene nanoplatelets

HCl:

Hydrochloric acid

PEG-GnP:

Pentaethylene glycol-treated graphene nanoplatelets

PEG-TGr:

Pentaethylene glycol thermally treated graphene

SSA:

Specific surface area

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

References

  1. Mehrali MMM, Sadeghinezhad E, Latibari ST, Kazi SS, Mehrali MMM, Zubir MNBM, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian J, Gao F, Yu X, Wu W, Meng H. Preparation of nitrogen-doped graphene by high-gravity technology and its application in oxygen reduction. Particuology. 2017;34:110–7.

    Article  CAS  Google Scholar 

  3. Zhang Y, Wang F, Zhu H, Zhou L, Zheng X, Li X, et al. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Appl Surf Sci. 2017;426:99–106.

    Article  CAS  Google Scholar 

  4. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expos. 1995;66:99–105.

    Google Scholar 

  5. Sinz C, Woei H, Khalis M, Abbas SA. Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J Adv Res Fluid Mech Therm Sci. 2016;24:1–11.

    Google Scholar 

  6. Alrashed AAAA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Shabani GAS, et al. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Phys B Condens Matter. 2018;537:176–83.

    Article  CAS  Google Scholar 

  7. Jehad DG, Hashim GA. Numerical prediction of forced convective heat transfer and friction factor of turbulent nanofluid flow through straight channels. J Adv Res Fluid Mech Therm Sci. 2015;8:1–10.

    Google Scholar 

  8. Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116:1314–25.

    Article  CAS  Google Scholar 

  9. Berrabah H, Sekrane N, Adda B. Comparative study of sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity for two materials (Al) and (Ni). J Adv Res Fluid Mech Therm Sci. 2016;18:20–34.

    Google Scholar 

  10. Hemmat Esfe M, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Phys E Low Dimens Syst Nanostruct. 2018;95:71–7.

    Article  CAS  Google Scholar 

  11. Lee KJ, Yoon SH, Jang J. Carbon nanofibers: a novel nanofiller for nanofluid applications. Small. 2007;3:1209–13.

    Article  CAS  PubMed  Google Scholar 

  12. Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett. 2011;6:1–7.

    Google Scholar 

  13. Taherian H, Alvarado JL, Languri EM. Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 1: critical review. Renew Sustain Energy Rev. 2018;82:4326–36.

    Article  CAS  Google Scholar 

  14. Mehrali M, Sadeghinezhad E, Rosen MA, Akhiani AR, Tahan Latibari S, Mehrali M, et al. Experimental investigation of thermophysical properties, entropy generation and convective heat transfer for a nitrogen-doped graphene nanofluid in a laminar flow regime. Adv Powder Technol. 2016;27:717–27.

    Article  CAS  Google Scholar 

  15. Kamatchi R, Kumaresan G. Investigations on pool boiling critical heat flux, transient characteristics and bonding strength of heater wire with aqua based reduced graphene oxide nanofluids. Chin J Chem Eng. 2018;26:445–54.

    Article  CAS  Google Scholar 

  16. Lee SW, Kim KM, Bang IC. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf. 2013;65:348–56. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.013.

    Article  CAS  Google Scholar 

  17. Fan D, Li Q, Chen W, Zeng J. Graphene nanofluids containing core–shell nanoparticles with plasmon resonance effect enhanced solar energy absorption. Sol Energy. 2017;158:1–8.

    Article  CAS  Google Scholar 

  18. Chen L, Li N, Zhang M, Li P, Lin Z. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets. J Solid State Chem. 2017;249:9–14.

    Article  CAS  Google Scholar 

  19. Gao Y, Wang H, Sasmito AP, Mujumdar AS. Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids. Int J Heat Mass Transf. 2018;123:97–109.

    Article  CAS  Google Scholar 

  20. Selvam C, Lal DM, Harish S. Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets. Thermochim Acta. 2016;642:32–8.

    Article  CAS  Google Scholar 

  21. Selvam C, Balaji T, Mohan Lal D, Harish S. Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Exp. Therm. Fluid Sci. 2017;80:67–76.

    Article  CAS  Google Scholar 

  22. Vallejo JP, Gómez-Barreiro S, Cabaleiro D, Gracia-Fernández C, Fernández-Seara J, Lugo L. Flow behaviour of suspensions of functionalized graphene nanoplatelets in propylene glycol–water mixtures. Int Commun Heat Mass Transf. 2018;91:150–7.

    Article  CAS  Google Scholar 

  23. Liu X, Rao Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim Acta. 2017;647:15–21.

    Article  CAS  Google Scholar 

  24. Wu P, He J, Chen L, Wu Y, Li H, Zhu H, et al. Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. J Energy Chem. 2017. https://doi.org/10.1016/j.jechem.2017.09.018.

    Article  Google Scholar 

  25. Amiri A, Zubir MNM, Dimiev AM, Teng KH, Shanbedi M, Kazi SN, et al. Facile, environmentally friendly, cost effective and scalable production of few-layered graphene. Chem Eng J. 2017;326:1105–15.

    Article  CAS  Google Scholar 

  26. Shazali SS, Rozali S, Amiri A, Zubir MNM, Sabri MFM, Zabri MZ. Evaluation on stability and thermophysical performances of covalently functionalized graphene nanoplatelets with xylitol and citric acid. Mater Chem Phys. 2018;212:363–71.

    Article  CAS  Google Scholar 

  27. Shazali SS, Amiri A, Mohd Zubir MN, Rozali S, Zabri MZ, Mohd Sabri MF, et al. Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents. Mater Chem Phys. 2018;206:94–102.

    Article  CAS  Google Scholar 

  28. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Ahmadi G, et al. A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications. Chem Phys Lett. 2017;675:92–7.

    Article  CAS  Google Scholar 

  29. Amani P, Vajravelu K. Intelligent modeling of rheological and thermophysical properties of green covalently functionalized graphene nanofluids containing nanoplatelets. Int J Heat Mass Transf. 2018;120:95–105.

    Article  CAS  Google Scholar 

  30. Sarsam WS, Amiri A, Kazi SN, Badarudin A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manag. 2016;116:101–11.

    Article  CAS  Google Scholar 

  31. Solangi KH, Kazi SN, Luhur MR, Badarudin A, Amiri A, Sadri R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy. 2015;89:1065–86.

    Article  CAS  Google Scholar 

  32. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

  33. Chen Y, Li D, Yang W, Xiao C, Wei M. Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymer (UK). 2018;140:56–72.

    Article  CAS  Google Scholar 

  34. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew BT, Kazi SN, et al. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag. 2015;92:322–30.

    Article  CAS  Google Scholar 

  35. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Kazi SN, Chew BT, et al. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers Manag. 2015;101:767–77.

    Article  CAS  Google Scholar 

  36. Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi SN, Chew BT, et al. Mass production of highly-porous graphene for high-performance supercapacitors. Sci Rep. 2016;6:32686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee GJ, Rhee CK. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci. 2014;49:1506–11.

    Article  CAS  Google Scholar 

  38. Gangadevi R, Vinayagam BK, Senthilraja S. Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant. Mater Today Proc. 2018;5:9004–11.

    Article  CAS  Google Scholar 

  39. Zhang P, Hong W, Wu JF, Liu GZ, Xiao J, Chen ZB, et al. Effects of surface modificationon the suspension stability and thermal conductivity of carbon nanotubes nanofluids. In: Energy procedia. 2015. p. 699–705.

  40. Arnold E. UK steam tables in SI units. London: United Kingdom Committee on the Properties of Steam; 1970.

    Google Scholar 

  41. Ghasemi SE. Thermophoresis and Brownian motion effects on peristaltic nanofluid flow for drug delivery applications. J Mol Liq. 2017;238:115–21.

    Article  CAS  Google Scholar 

  42. Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azwadi Che Sidik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawi, O.A., Sidik, N.A.C., Kazi, S.N. et al. Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization. J Therm Anal Calorim 135, 1081–1093 (2019). https://doi.org/10.1007/s10973-018-7585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7585-0

Keywords

Navigation