Skip to main content
Log in

The catalytic effect of Ag/CNTs nanocomposite on the ignition reaction of Mg/KNO3 pyrotechnic by determination of the kinetic triplet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ignition reaction of Mg/KNO3 was improved with addition of Ag/CNTs nanocomposite as catalyst. The nanoparticles of Ag(0) was deposited on the multi-walled carbon nanotubes (CNTs) using NaBH4 as reducing reagent. The prepared catalyst was analyzed using X-ray diffraction pattern, field emission-scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller method. The differential scanning calorimetry (DSC) curves of Mg/KNO3 and Mg/KNO3/Ag/CNTs pyrotechnic were studied at heating rates of 5, 10, 15 and 20 °C min−1 under nitrogen atmosphere. The shift of the temperature of exothermic peak to lower temperatures and increasing of enthalpy of ignition reaction of Mg/KNO3 pyrotechnic was seen in DSC curves in presence of Ag/CNTs catalyst. The activation energies (Ea) of ignition reaction of Mg/KNO3 and Mg/KNO3/Ag/CNTs pyrotechnics were calculated 172–186 and 152–165 kJ mol−1, respectively, using the free-model methods of Kissinger, Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose. Also the pre-exponential factor (A) and kinetic model function of ignition reaction of pyrotechnics were determined by the compensation effect and nonlinear model fitting method. The values of pre-exponential factor were obtained 2.9 × 1012 and 1.1 × 1010 min−1 for the ignition reaction of Mg/KNO3 in absence and in presence of catalyst of Ag/CNTs, respectively. The mechanism functions of Avrami–Erofeev A2\(\left( {f(a) = 2\left( {1 - \alpha } \right)\left[ { - { \ln }\left( {1 - \alpha } \right)} \right]^{1/2} } \right)\) and A3\(\left( {f\left( \alpha \right) = 3\left( {1 - \alpha } \right)\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{2/3} } \right)\) were found to be the best pattern for ignition reaction of Mg/KNO3 and Mg/KNO3/Ag/CNTs pyrotechnics, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conkling JA, Mocella C. Chemistry of pyrotechnics basic principles and theory. 2nd ed. London: Taylor and Francis; 2010.

    Google Scholar 

  2. McLain JH. Pyrotechnics, from the viewpoint of solid state chemistry. New York: Franklin Institute Press; 1980.

    Google Scholar 

  3. Kosanke KL, Kosanke BJ. Parallel and propagative burning. Pyrotechnics Guild Int Bull. 1992;79:167–72.

    Google Scholar 

  4. Ping C, Li F, Jian Z, Wei J. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2006;31:452–5.

    Article  CAS  Google Scholar 

  5. Liu LL, Li FS, Tan LH, Ming L, Yi Y. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2004;29:34–8.

    Article  CAS  Google Scholar 

  6. Zhao S, Ma D. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate. J Nanomater. 2010;201:1–5.

    Google Scholar 

  7. Pouretedal HR, Shevidi O, Nasiri M, Pourhasan FS. Red water treatment by photodegradation process in presence of modified TiO2 nanoparticles and validation of treatment efficiency by MLR technique. J Iran Chem Soc. 2016;13:2267–74.

    Article  CAS  Google Scholar 

  8. Pouretedal HR, Ravanbod M. The catalytic effect of Mn2O3 nanoparticles on the ignition reaction of pyrotechnic of ammonium nitrate(V)/thiourea. Cent Eur J Energy Mater. 2017;14:430–47.

    Article  CAS  Google Scholar 

  9. Ma S, Luo R, Gold JI, Yu AZ, Kim B, Kenis PJA. Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J Mater Chem A. 2016;4:8573–8.

    Article  CAS  Google Scholar 

  10. Xin-ming Q, Nan D, Si-fan W, Zeng-yi L. Catalytic effect of carbon nanotubes on pyrotechnics. Chin J Energ Mater. 2009;17:603–7.

    Google Scholar 

  11. Zhang X, Jiang W, Song D, Liu Y, Geng J, Li F. Preparation and catalytic activity of Co/CNTs nanocomposites via microwave irradiation. Propellants Explos Pyrotech. 2009;34:151–4.

    Article  CAS  Google Scholar 

  12. Lăzăroaie C, Eşanu S, Său C, Petre R, Iordache PZ, Staikos G. Temperature measurements of magnesium- and aluminium-based flares. J Therm Anal Calorim. 2014;115:1407–15.

    Article  CAS  Google Scholar 

  13. Shidlovskiy AA: Principles of pyrotechnics, 3rd ed., Moscow, 1964. (Translated by Foreign Technology Division, Wright-Patterson Air Force Base, OH, 1974).

  14. Babar Z, Malik AQ. Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminium fuelled pyrotechnic compositions. Cent Eur J Energy Mater. 2015;12:579–92.

    CAS  Google Scholar 

  15. Pouretedal HR, Ravanbod M. Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique. J Therm Anal Calorim. 2015;119:2281–8.

    Article  CAS  Google Scholar 

  16. Laye PG, Charsley EL. Thermal analysis of pyrotechnics. Thermochim Acta. 1987;120:325–49.

    Article  CAS  Google Scholar 

  17. Pourmortazavi SM, Hosseini SG, Hajimirsadeghi SS, Fareghi Alamdari R. Investigation on thermal analysis of binary zirconium/oxidant pyrotechnic systems. Combust Sci Technol. 2008;180:2093–102.

    Article  CAS  Google Scholar 

  18. Yang G-W, Gao G-Y, Wang C, Xu C-L, Li H-L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon. 2008;46:747–52.

    Article  CAS  Google Scholar 

  19. Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6:399–408.

    Article  CAS  Google Scholar 

  20. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J Radiation Res Appl Sci. 2016;9:217–27.

    Article  CAS  Google Scholar 

  21. Pouretedal HR, Tofangsazi Z, Keshavarz MH. Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. J Alloys Compounds. 2012;513:359–64.

    Article  CAS  Google Scholar 

  22. Yamada T, Hayashi Y, Takizawa H. Synthesis of carbon nanotube/silver nanocomposites by ultrasonication. Mater Trans. 2010;51:1769–72.

    Article  CAS  Google Scholar 

  23. Zl L, Xy L, Xd S, Jy L. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B. 2004;108:8234–40.

    Article  CAS  Google Scholar 

  24. Zhu CG, Wang HZ, Min L. Ignition temperature of magnesium powder and pyrotechnic composition. J Energ Mater. 2014;32:219–26.

    Article  CAS  Google Scholar 

  25. Brown SD, Charsley EL, Goodall SJ, Laye PG, Rooney JJ, Griffiths TT. Studies on the ageing of a magnesium–potassium nitrate pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques. Thermochim Acta. 2003;401:53–61.

    Article  CAS  Google Scholar 

  26. Pouretedal HR, Loh Mousavi S. Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J Therm Anal Calorim. 2018;132:1307–15.

    Article  CAS  Google Scholar 

  27. Ting A, Hui-Qun C, Feng-Qi Z, Xiao-Ning R, De-Yu T, Si-Yu X, Hong-Xu G, Yi T, Li-Bai X. Preparation and characterization of Ag/CNTs nanocomposite and its effect on thermal decomposition of cyclotrimethylene trinitramine. Acta Phys Chim Sin. 2012;28:2202–8.

    Google Scholar 

  28. Dave PN, Vara J. Nano metal oxide as Potential catalyst for thermal decomposition of Ammonium nitrate. Int J Res. 2017;4:943–6.

    Google Scholar 

  29. Xu Z-X, Xu G-S, Fu X-Q, Wang Q. The mechanism of nano-CuO and CuFe2O4 catalyzed thermal decomposition of ammonium nitrate. Nanomater Nanotechnol. 2016;6:1–10.

    Article  CAS  Google Scholar 

  30. Pouretedal HR, Basati S. Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15. Iran J Chem Chem Eng. 2015;34:11–9.

    CAS  Google Scholar 

  31. Liu Y, Wu G, Cui Y. Ag/CNT-catalyzed hydroamination of activated alkynes with aromatic amines. Appl Organomet Chem. 2013;27:206–8.

    Article  CAS  Google Scholar 

  32. Sinapour H, Damiri S, Pouretedal HR. The study of RDX impurity and wax effects on the thermal decomposition kinetics of HMX explosive using DSC/TG and accelerated aging methods. J Therm Anal Calorim. 2017;129:271–792.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  34. Ravanbod M, Pouretedal HR, Amini MK, Ebadpour R. Kinetic study of the thermal decomposition of potassium chlorate using the non-isothermal TG/DSC technique. Cent Eur J Energy Mater. 2016;13:261–70.

    Article  Google Scholar 

  35. Liu J, Song D, Guan H. Isothermal kinetics approach to investigating the oxidation process of red phosphorus in air. J Therm Anal Calorim. 2017;128:1801–10.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  37. Pouretedal HR, Damiri S, Ghaemi EF. Non-isothermal studies on the thermal decomposition of C4 Explosive using the TG/DTA Technique. Cent Eur J Energ Mater. 2014;11:285–94.

    Google Scholar 

  38. Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;127:1751–6.

    Article  CAS  Google Scholar 

  39. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  40. Pouretedal HR, Ebadpour R. Application of non-isothermal thermogravimetric method to interpret the decomposition kinetics of NaNO3, KNO3, and KClO4. Int J Thermophys. 2014;35:942–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pouretedal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouretedal, H.R., Shahmoradi, M., Zareh, A. et al. The catalytic effect of Ag/CNTs nanocomposite on the ignition reaction of Mg/KNO3 pyrotechnic by determination of the kinetic triplet. J Therm Anal Calorim 135, 2975–2983 (2019). https://doi.org/10.1007/s10973-018-7554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7554-7

Keywords

Navigation