Skip to main content
Log in

Kinetics of resorcinol–formaldehyde polycondensation by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of resorcinol–formaldehyde polycondensation was investigated by DSC. The resorcinol–formaldehyde polycondensation mixtures were prepared using different catalyst (Na2CO3) concentrations (molar ratio of resorcinol/catalyst R/C = 25 and 50) and mass contents of reactants (w = 20 and 40%). The studied polycondensation mixtures were heated from 10 to 100 °C at five different heating rates (0.5–2.5 °C min−1). The two obtained DSC peaks correspond with two reaction steps (formation of hydroxymethyl derivatives of resorcinol and polycondensation reaction itself). The overall reaction heat evolved during both steps corresponds to 97–104 kJ mol−1 for all mixtures. Based on the kinetic analysis, the first reaction step is best fitted by the second-order kinetic model and its rate is controlled by chemical reaction. The second reaction step can be described by R3 mechanism and is probably limited by diffusion in more viscous solution. Found kinetics equation allows to predict the composition of reaction mixture during the polycondensation at least at micro-scale. The obtained results can be useful for prediction of reaction course which can control the porosity of resorcinol–formaldehyde gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater. 1996;8:1667–81.

    Article  CAS  Google Scholar 

  2. Pekala RW, Alviso CT, Kong FM, Hulsey SS. Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids. 1992;145:90–8.

    Article  CAS  Google Scholar 

  3. Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39:937–50.

    Article  CAS  Google Scholar 

  4. Lazzari M, Soavi F, Mastragostino M. High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. J Power Sour. 2008;178:490–6.

    Article  CAS  Google Scholar 

  5. Lewicki JP, Fox CA, Worsley MA. On the synthesis and structure of resorcinol-formaldehyde polymeric networks: precursors to 3D-carbon macroassemblies. Polymer. 2015;69:45–51.

    Article  CAS  Google Scholar 

  6. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci. 2010;3:1238–51.

    Article  CAS  Google Scholar 

  7. Kabbour H, Baumann TF, Satcher Joe H, Saulnier A, Ahn CC. Toward new candidates for hydrogen storage: high-surface-area carbon aerogels. Chem Mater. 2006;18:6085–7.

    Article  CAS  Google Scholar 

  8. Tonanon N, Wareenin Y, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, et al. Preparation of resorcinol formaldehyde (RF) carbon gels: Use of ultrasonic irradiation followed by microwave drying. J Non-Cryst Solids. 2006;352:5683–6.

    Article  CAS  Google Scholar 

  9. Taylor SJ, Haw MD, Sefcik J, Fletcher AJ. Gelation mechanism of resorcinol-formaldehyde gels investigated by Dynamic light scattering. Langmuir. 2014;30:10231–40.

    Article  CAS  Google Scholar 

  10. El Khatat AM, Al-Muhtaseb SA. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater. 2011;23:2887–903.

    Article  Google Scholar 

  11. Pekala RW, Kong FM. A synthetic route to organic aerogels-mechanism, structure, and properties. J Phys Colloq. 1989;50:C4-33–40.

    Google Scholar 

  12. Al-Muhtaseb SA, Ritter JA. Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater. 2003;15:101–14.

    Article  CAS  Google Scholar 

  13. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J. New organic aerogels based upon a phenolic-furfural reaction. J Non-Cryst Solids. 1995;188:34–40.

    Article  CAS  Google Scholar 

  14. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, et al. Carbon aerogels for electrochemical applications. J Non-Cryst Solids. 1998;225:74–80.

    Article  CAS  Google Scholar 

  15. Shen J, Li J, Chen Q, Luo T, Yu W, Qian Y. Synthesis of multi-shell carbon microspheres. Carbon. 2006;44:190–3.

    Article  CAS  Google Scholar 

  16. Wang J, Glora M, Petricevic R, Saliger R, Proebstle H, Fricke J. Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mater. 2001;8:159–65.

    Article  CAS  Google Scholar 

  17. Brandt R, Petricevic R, Pröbstle H, Fricke J. Acetic acid catalyzed carbon aerogels. J Porous Mater. 2003;10:171–8.

    Article  CAS  Google Scholar 

  18. Coteţ LC, Danciu V, Coşoveanu V, Popescu IC, Anna R, Molins E. Synthesis of meso-and macroporous carbon aerogels. Rev Roum Chim. 2007;52:1077–81.

    Google Scholar 

  19. Oyedoh E, Albadarin A, Walker GM, Mirzaeian M, Ahmad M. Preparation of controlled porosity resorcinol formaldehyde xerogels for adsorption applications. Chem Eng Trans. 2013;32:1651–6.

    Google Scholar 

  20. Feng J, Feng J, Zhang C. Shrinkage and pore structure in preparation of carbon aerogels. J Sol-Gel Sci Technol. 2011;59:371–80.

    Article  CAS  Google Scholar 

  21. Werstler DD. Quantitative 13C n.m.r. characterization of aqueous formaldehyde resins: 2. Resorcinol-formaldehyde resins. Polymer. 1986;27:757–64.

    Article  CAS  Google Scholar 

  22. Šebenik A, Osredkar U, Vizovišek I. Study of the reaction between resorcinol and formaldehyde. Polymer. 1981;22:804–6.

    Article  Google Scholar 

  23. Raff RAV, Silverman BH. Kinetics of the uncatalyzed reactions between resorcinol and formaldehyde. Ind Eng Chem. 1951;43:1423–7.

    Article  CAS  Google Scholar 

  24. Gaca KZ, Parkinson JA, Sefcik J. Kinetics of early stages of resorcinol-formaldehyde polymerization investigated by solution-phase nuclear magnetic resonance spectroscopy. Polymer. 2017;110:62–73.

    Article  CAS  Google Scholar 

  25. Christiansen AW. Resorcinol–formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy. J Appl Polym Sci. 2000;75:1760–8.

    Article  CAS  Google Scholar 

  26. Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Wang L-Q, Exarhos GJ, Baumann TF, et al. Nuclear magnetic resonance studies of resorcinol-formaldehyde aerogels. J Phys Chem B. 2005;109:11215–22.

    Article  CAS  Google Scholar 

  27. Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. Hoboken: John Wiley; 2009.

    Google Scholar 

  28. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  30. Wiener M, Reichenauer G, Scherb T, Fricke J. Accelerating the synthesis of carbon aerogel precursors. J Non-Cryst Solids. 2004;350:126–30.

    Article  CAS  Google Scholar 

  31. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  32. Saeed RM, Schlegel JP, Castano C, Sawafta R. Uncertainty of thermal characterization of phase change material by differential scanning calorimetry analysis. Int J Eng Res. 2016;5:9.

    Google Scholar 

  33. Job N, Pirard R, Marien J, Pirard J-P. Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon. 2004;42:619–28.

    Article  CAS  Google Scholar 

  34. Tonge LY, Hodgkin J, Blicblau AS, Collins PJ. Effects of initial phenol-formaldehyde (PF) reaction products on the curing properties of PF resin. J Therm Anal Calorim. 2001;100:10.

    Google Scholar 

  35. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-14175-6.

    Book  Google Scholar 

  36. Knop A, Scheib W. Chemistry and application of phenolic resins. Berlin: Springer; 1979. www.springer.com/cn/book/9783540090519.

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic in the “National Feasibility Program I,” Project LO1208 “TEWEP” and by EU structural funding Operational Programme Research and Development for Innovation, Project No. CZ.1.05/2.1.00/19.0388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kinnertová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinnertová, E., Slovák, V. Kinetics of resorcinol–formaldehyde polycondensation by DSC. J Therm Anal Calorim 134, 1215–1222 (2018). https://doi.org/10.1007/s10973-018-7532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7532-0

Keywords

Navigation