Skip to main content
Log in

Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4–glycerol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermophysical properties, such as thermal conductivity and viscosity, of magnetic nanofluids (MNFs) can be enhanced by applying external magnetic fields. Such property enhancement can be beneficial for having a non-contact control of heat transfer rates in many applications such as cooling of electronic devices, heating mediator for targeted cancer treatment, drug delivery, and heat transfer medium in energy conversion systems. In this study, a detailed experimental investigation has been carried out to measure the thermal conductivity and viscosity of a magnetic nanofluid under the influence of a uniform external magnetic field. The MNF (i.e., glycerol–Fe3O4) is prepared by dispersing Fe3O4 magnetic nanoparticles in glycerol at different volume fractions of nanoparticles (i.e., φ = 0.5, 1.0, 1.5, 2.0, and 3.0%). The experimental results showed that the viscosity linearly increased with the increase in volume fractions while significantly decreased with the increase in temperature. With respect to the viscosity measurement, the maximum ratio revealed a value of 7.2 for 3.0% volume fraction and 50 °C subjected to 543 [G] magnetic field. Also, a 16.9% thermal conductivity enhancement was achieved when φ = 3.0% at 40 °C under 543 [G] magnetic field. Using the experimental results, a nonlinear model was developed as a function of temperature (T), magnetic field (B), and volume fractions of nanoparticles (φ) to predict the thermal conductivity of glycerol–Fe3O4. The proposed model provided satisfactory performance with an R2 value of 0.961, MSE value of 0.00015, and MAE value of 0.00932.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

B :

Magnetic field (G)

CTAB:

Hexadecyltrimethylammonium bromide

d :

Characteristic size of the nanoparticle (nm)

EG:

Ethylene glycol

ICDD:

International Centre for Diffraction Data

JCPDS:

Joint Committee on Powder Diffraction Standards

k :

Thermal conductivity (W m−1 K)

k b :

Boltzmann’s constant = 1.38066 × 10−23 J K−1

MAE:

Mean absolute error

MNF:

Magnetic nanofluid

MSE:

Mean square error

PGA:

Poly-glutamic acid

Pr:

Prandtl number

RMSE:

Root-mean-square error

Re:

Reynolds number

SDS:

Sodium dodecyl sulfate

T :

Temperature (°C)

ρ :

Density (g mL−1)

φ :

Volume fraction of nanoparticles (%)

μ :

Dynamic viscosity (mPa s)

ψ :

Sphericity of nanoparticles

eff:

Effective

f :

Fluid

s :

Solid

nf:

Nanofluid

References

  1. Sharifpur M, Adio SA, Meyer JP. Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf. 2015;68:208–19.

    Article  CAS  Google Scholar 

  2. Sharma AK, Tiwari AK, Dixit AR. Rheological behaviour of nanofluids: a review. Renew Sustain Energy Rev. 2016;53:779–91.

    Article  CAS  Google Scholar 

  3. Sadeghinezhad E, Mehrali M, Saidur R, Mehrali M, Latibari ST, Akhiani AR, Metselaar HSC. A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers Manag. 2016;111:466–87.

    Article  CAS  Google Scholar 

  4. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  5. Rashidi S, Mahian O, Languri EM. Applications of nanofluids on condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  6. Rashidi S, Eskandarian M, Mahian O, Poncent S. Combination of nanofluids and inserts for heat transfer enhancement: gaps and challenges. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  7. Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources. J Therm Anal Calorim. 2015;119(3):2079–91.

    Article  CAS  Google Scholar 

  8. Ramezanpour M, Siavashi M. Application of SiO2–water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7156-4.

    Article  Google Scholar 

  9. Şeşen M, Tekşen Y, Şendur K, Mengüç MP, Öztürk H, Yağcı Acar HF, Koşar A. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid. J Appl Phys. 2012;112(6):064320.

    Article  CAS  Google Scholar 

  10. Zakaria I, Azmi WH, Mohamed WANW, Mamat R, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water–ethylene glycol mixture for proton exchange membrane fuel cell application. Int Commun Heat Mass Transf. 2015;61:61–8.

    Article  CAS  Google Scholar 

  11. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids review. Renew Sustain Energy Rev. 2013;21:548–61.

    Article  CAS  Google Scholar 

  12. Eltaggaz A, Zawada P, Hegab HA, Deiab I, Kishawy HA. Coolant strategy influence on tool life and surface roughness when machining ADI. Int J Adv Manuf Technol. 2018;94(9–12):3875–87.

    Article  Google Scholar 

  13. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab., IL (United States); 1995.

  14. Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Int Nano Lett. 2014;4(4):109–20.

    Article  CAS  Google Scholar 

  15. Khedkar RS, Sonawane SS, Wasewar KL. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf. 2012;39(5):665–9.

    Article  CAS  Google Scholar 

  16. Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38.

    Article  CAS  Google Scholar 

  17. Hedayatnasab Z, Abnisa F, Ashri WM, Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–96.

    Article  CAS  Google Scholar 

  18. Rashidi S, Esfahani JA, Makaniyan M. Applications of magnetohydrodynamics in biological systems—a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72.

    Article  CAS  Google Scholar 

  19. Choi TJ, Jang SP, Kedzierski MA. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf. 2018;122:483–90.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. J Taiwan Inst Chem Eng. 2014;45(1):40–9.

    Article  CAS  Google Scholar 

  21. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J Mol Liq. 2017;234:324–9.

    Article  CAS  Google Scholar 

  22. Bayomy AM, Saghir MZ. Experimental study of using Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach. Int J Heat Mass Transf. 2017;107:181–203.

    Article  CAS  Google Scholar 

  23. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  24. Nojoomizadeh M, D’Orazio A, Karimipour A, Afrand M, Goodarzi M. Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/water nanofluid flow and heat transfer inside a microchannel filled by a porous media. Phys E. 2018;97:226–38.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater. 2014;369:69–80.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Rashidi MM, Ganji DD. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Comput Methods Appl Mech Eng. 2015;294:299–312.

    Article  Google Scholar 

  27. Kannadasan N, Ramanathan K, Suresh S. Comparison of heat transfer and pressure drop in horizontal and vertical helically coiled heat exchanger with CuO/water based nano fluids. Exp Therm Fluid Sci. 2012;42:64–70.

    Article  CAS  Google Scholar 

  28. Ho CJ, Chen WC. An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng. 2013;50(1):516–22.

    Article  CAS  Google Scholar 

  29. Raju CSK, Sandeep N, Malvandi A. Free convective heat transfer of mhd Cu–kerosene nanofluid over a cone with temperature dependent viscosity. Acta Astronaut. 2016;129:419–28.

    Article  CAS  Google Scholar 

  30. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  31. Huang J, Luo W. Heat transfer through convection in a quasi-one-dimensional magnetic fluid. J Therm Anal Calorim. 2013;113(2):449–52.

    Article  CAS  Google Scholar 

  32. Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci. 2015;68:663–8.

    Article  CAS  Google Scholar 

  33. Agarwal DK, Vaidyanathan A, Kumar SS. Experimental investigation on thermal performance of kerosene–graphene nanofluid. Exp Therm Fluid Sci. 2016;71:126–37.

    Article  CAS  Google Scholar 

  34. Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol. 2017;7(5):738–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Karkan SF, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, Abasi E, Hosseini A, Davaran S. Magnetic nanoparticles in cancer diagnosis and treatment: a review. Artif Cells Nanomed Biotechnol. 2017;45(1):1–5.

    Article  CAS  Google Scholar 

  36. Tan HW, Aziz ARA, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev. 2013;27:118–27.

    Article  CAS  Google Scholar 

  37. Tan I, Wee CC, Sopade PA, Halley PJ. Investigation of the starch gelatinisation phenomena in water–glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydr Polym. 2004;58(2):191–204.

    Article  CAS  Google Scholar 

  38. Ladero M, de Gracia M, Tamayo JJ, de Ahumada IL, Trujillo F, Garcia-Ochoa F. Kinetic modelling of the esterification of rosin and glycerol: application to industrial operation. Chem Eng J. 2011;169(1–3):319–28.

    Article  CAS  Google Scholar 

  39. Hussein AM, Dawood HK, Bakara RA, Kadirgamaa K. Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system. Case Stud Therm Eng. 2017;9:72–8.

    Article  Google Scholar 

  40. Abareshi M, Sajjadi SH, Zebarjad S, Goharshadi EK. Fabrication, characterization, and measurement of viscosity of α-Fe2O3–glycerol nanofluids. J Mol Liq. 2011;163(1):27–32.

    Article  CAS  Google Scholar 

  41. Tshimanga N, Sharifpur M, Meyer JP. Experimental investigation and model development for thermal conductivity of glycerol–MgO nanofluids. Heat Transf Eng. 2016;37(18):1538–53.

    Article  CAS  Google Scholar 

  42. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118(1):287–94.

    Article  CAS  Google Scholar 

  43. Tsai T-H, Kuo L-S, Chen P-H, Yang C-T. Thermal conductivity of nanofluid with magnetic nanoparticles. PIERS Online. 2009;5(3):231–4.

    Article  Google Scholar 

  44. Atashrouz S, Mozaffarian M, Pazuki G. Viscosity and rheological properties of ethylene glycol + water + Fe3O4 nanofluids at various temperatures: experimental and thermodynamics modeling. Korean J Chem Eng. 2016;33(9):2522–9.

    Article  CAS  Google Scholar 

  45. Sundar LS, Ramana EV, Singh MK, De Sousa ACM. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett. 2012;554:236–42.

    Article  CAS  Google Scholar 

  46. Isshiki R, Nakamura Y, Takeuchi S, Hirata T, Sakai K, Kiwa T, Tsukada K. Evaluation of the magnetization properties of magnetic nanoparticles in serum using HTS-SQUID. IEEE Trans Appl Supercond. 2018;28(4):1–5.

    Article  Google Scholar 

  47. Xu K, Wang Y, Ding X, Huang Y, Li N, Wen Q. Magnetic solid phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles. Talanta. 2016;148:153–62.

    Article  CAS  PubMed  Google Scholar 

  48. Wan S, Zheng Y, Liu Y, Yan H, Liu K. Fe3O4 nanoparticles coated with homopolymers of glycerol mono (meth) acrylate and their block copolymers. J Mater Chem. 2005;15(33):3424–30.

    Article  CAS  Google Scholar 

  49. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM. Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids. J Appl Phys. 2011;110(1):014309.

    Article  CAS  Google Scholar 

  50. Sonawane SS, Juwar V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl Therm Eng. 2016;109:121–9.

    Article  CAS  Google Scholar 

  51. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTS–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int J Heat Mass Transf. 2016;76:171–7.

    Article  CAS  Google Scholar 

  52. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–AG/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  53. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vectormachine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7035-z.

    Article  Google Scholar 

  54. Esfe MH, Arani AAA, Badi RS, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018;131(3):2381–93.

    Article  CAS  Google Scholar 

  55. Esfe MH, Arani AAA. MWCNT (% 40)-SiO2 (%60)/5W50 nanolubricant. J Mol Liq. 2018;259:227–37.

    Article  CAS  Google Scholar 

  56. Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of Mn Fe2O3 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7(1):17369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kumar N, Sonawane SS, Sonawane SH. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int Commun Heat Mass Transf. 2018;90:1–10.

    Article  CAS  Google Scholar 

  58. Hussien AA, Yusop NM, Abdullah MZ, Al-Nimr MA, Khavarian M. Study on convective heat transfer and pressure drop of MWCNT/water nanofluid in mini-tube. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7234-7.

    Article  Google Scholar 

  59. Sigma Aldrich. Safety Data Sheet-Iron(II, III) Oxide nanopowder.

  60. De Montferrand C, Ling H, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater. 2013;9(4):6150–7.

    Article  PubMed  CAS  Google Scholar 

  61. Tian F, Sun L, Mojumdar SC, Venart JES, Prasad RC. Absolute measurement of thermal conductivity of poly (acrylic acid) by transient hot wire technique. J Therm Anal Calorim. 2011;104(3):823–9.

    Article  CAS  Google Scholar 

  62. Cobos DR. Using the KD2 pro to measure thermal properties of fluids. Application note, Decagon Devices; 2010.

  63. Devices D, et al. KD2 pro thermal properties analyzer operators manual version 4. Pullman: Decagon Devices; 2006.

    Google Scholar 

  64. Ramires MLV, Nieto CA, de Castro Y, Nagasaka A Nagashima, Assael MJ, Wakeham WA. Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data. 1995;24(3):1377–81.

    Article  CAS  Google Scholar 

  65. Nieto CA, de Castro SFY, Li A Nagashima, Trengove RD, Wakeham WA. Standard reference data for the thermal conductivity of liquids. J Phys Chem Ref Data. 1986;15(3):1073–86.

    Article  Google Scholar 

  66. Amani M, Amani P, Kasaeian A, Mahian O, Kasaeian F, Wongwises S. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. J Magn Magn Mater. 2017;428:457–63.

    Article  CAS  Google Scholar 

  67. Sundar LS, et al. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74.

    Article  CAS  Google Scholar 

  68. Águila B, et al. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material. Int J Heat Mass Transf. 2018;120:1009–19.

    Article  CAS  Google Scholar 

  69. Xue Q-Z. Model for effective thermal conductivity of nanofluids. Phys Lett A. 2003;307(5-6):313–7.

    Article  CAS  Google Scholar 

  70. Parekh K, Lee HS. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys. 2010;107(9):09A310.

    Article  CAS  Google Scholar 

  71. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ashutosh Singh for providing laboratory apparatuses for the present experimental study. Also, the first author is grateful to Dr. Amirreza Shirani Bidabadi and Peter J. Krupp for their supports and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohel Mahmud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiyan, M., Ebadi, S., Mahmud, S. et al. Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4–glycerol. J Therm Anal Calorim 135, 1451–1464 (2019). https://doi.org/10.1007/s10973-018-7531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7531-1

Keywords

Navigation