Skip to main content
Log in

Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)/poly(ethylene oxide) (PEO) blends nucleated by a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), were prepared by melt blending. The crystallization behavior and mechanical properties of the materials were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, dynamic mechanical analyzer and tensile testing. It was found that PEO had a synergistic effect together with BTCA on promoting PLA crystallization, besides its toughening effect on the material. Moreover, BTCA revealed prominent reinforcement effect on both neat PLA and PLA/PEO blends in the glass transition region and above, indicating the improvement on the heat resistance of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  2. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.

    Article  CAS  Google Scholar 

  3. Laycock B, Nikolic M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. Lifetime prediction of biodegradable polymers. Prog Polym Sci. 2017;71:144–89.

    Article  CAS  Google Scholar 

  4. Jin X, Gu X, Chen C, Tang W, Li H, Liu X, Bourbigot S, Zhang Z, Sun J, Zhang S. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. J Mater Sci. 2017;52:12235–50.

    Article  CAS  Google Scholar 

  5. Wang Y, Steinhoff B, Brinkmann C, Alig I. In-line monitoring of the thermal degradation of poly(L-lactic acid) during melt extrusion by UV-vis spectroscopy. Polymer. 2008;49:1257–65.

    Article  CAS  Google Scholar 

  6. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  7. Bubeck RA, Merrington A, Dumitrascu A, Smith PB. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309–16.

    Article  CAS  Google Scholar 

  8. Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Memory effect on the crystallization behavior of poly(lactic acid) probed by infrared spectroscopy. Eur Polym J. 2017;91:376–85.

    Article  CAS  Google Scholar 

  9. Wang Y, Li M, Shen C. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Mater Lett. 2011;65:3525–8.

    Article  CAS  Google Scholar 

  10. Wang Y, Li M, Wang K, Shao C, Li Q, Shen C. Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter. 2014;10:1512–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C. Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test. 2015;41:163–71.

    Article  CAS  Google Scholar 

  12. Wang Y, Liu L, Li M, Cao W, Liu C, Shen C. Spectroscopic analysis of post drawing relaxation in poly(lactic acid) with oriented mesophase. Polym Test. 2015;43:103–7.

    Article  CAS  Google Scholar 

  13. Wang Y, Ribelles JLG, Sanchez MS, Mano JF. Morphological contributions to glass transition in poly(L-lactic acid). Macromolecules. 2005;38:4712–8.

    Article  CAS  Google Scholar 

  14. Wang M, Wu Y, Li YD, Zeng JB. Progress in toughening poly(lactic acid) with renewable polymers. Polym Rev. 2017;57:557–93.

    Article  CAS  Google Scholar 

  15. Ferri JM, Samper MD, Garcia-Sanoguera D, Reig MJ, Fenollar O, Balart R. Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). J Mater Sci. 2016;51:5356–66.

    Article  CAS  Google Scholar 

  16. Refaa Z, Boutaous M, Xin S, Siginer DA. Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim. 2017;128:687–98.

    Article  CAS  Google Scholar 

  17. Pan P, Liang Z, Cao A, Inoue Y. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1:402–11.

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.

    Article  CAS  Google Scholar 

  19. Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C. Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. 2013;48:2737–46.

    Article  CAS  Google Scholar 

  20. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R. Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules. 2011;44:6496–502.

    Article  CAS  Google Scholar 

  21. Wang Y, Tong B, Hou SJ, Li M, Shen CY. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A. 2011;42:66–74.

    Article  CAS  Google Scholar 

  22. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull. 2013;70:195–206.

    Article  CAS  Google Scholar 

  23. He D, Wang Y, Shao C, Zheng G, Li Q, Shen C. Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test. 2013;32:1088–93.

    Article  CAS  Google Scholar 

  24. Wang Y, He D, Xiao W, Wei C, Li Q, Shen C. Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polym Bull. 2013;70:2911–22.

    Article  CAS  Google Scholar 

  25. Gui Z, Lu C, Cheng S. Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide. Polym Test. 2013;32:15–21.

    Article  CAS  Google Scholar 

  26. Xu T, Wang Y, Han Q, He D, Li Q, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci B. 2014;53:1680–94.

    Article  CAS  Google Scholar 

  27. Zhang H, Wang S, Zhang S, Ma R, Wang Y, Cao W, Liu C, Shen C. Crystallization behavior of poly(lactic acid) with a self-assembly aryl amide nucleating agent probed by real-time infrared spectroscopy and X-ray diffraction. Polym Test. 2017;64:12–9.

    Article  CAS  Google Scholar 

  28. Song P, Wei Z, Liang J, Chen G, Zhang W. Crystallization behavior and nucleation analysis of poly(l-lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52:1058–68.

    Article  CAS  Google Scholar 

  29. Nakajima H, Takahashi M, Kimura Y. Induced crystallization of PLLA in the presence of 1,3,5-benzenetricarboxylamide derivatives as nucleators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng. 2010;295:460–8.

    CAS  Google Scholar 

  30. Bai H, Zhang W, Deng H, Zhang Q, Fu Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–7.

    Article  CAS  Google Scholar 

  31. Xie Q, Han L, Shan G, Bao Y, Pan P. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain Chem Eng. 2016;4:2680–8.

    Article  CAS  Google Scholar 

  32. Fan Y, Zhu J, Yan S, Chen X, Yin J. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(L-lactic acid). Polymer. 2015;67:63–71.

    Article  CAS  Google Scholar 

  33. Ma P, Xu Y, Wang D, Dong W, Chen M. Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind Eng Chem Res. 2014;53:12888–92.

    Article  CAS  Google Scholar 

  34. Ma P, Yu Q, Shen T, Dong W, Chen M. Strong synergetic effect of fibril-like nucleator and shear flow on the melt crystallization of poly(L-lactide). Eur Polym J. 2017;87:221–30.

    Article  CAS  Google Scholar 

  35. Tsuji H, Horikawa G, Itsuno S. Melt-processed biodegradable polyester blends of poly(L-lactic acid) and poly(ε-caprolactone): effects of processing conditions on biodegradation. J Appl Polym Sci. 2017;104:831–41.

    Article  CAS  Google Scholar 

  36. Sakai F, Nishikawa K, Inoue Y, Yazawa K. Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules. 2009;42:8335–42.

    Article  CAS  Google Scholar 

  37. Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces. 2012;4:897–905.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang L, Wolcott MP, Zhang JW. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol. 2006;7:199–207.

    Article  CAS  Google Scholar 

  39. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL. Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci. 2010;116:680–7.

    CAS  Google Scholar 

  40. Dil EJ, Carreau PJ, Favis BD. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer. 2015;68:202–12.

    Article  CAS  Google Scholar 

  41. Moustafa H, El KN, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces. 2017;9:20132–41.

    Article  CAS  PubMed  Google Scholar 

  42. Desai NP, Hubbell JA. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules. 1992;25:6718–32.

    Article  Google Scholar 

  43. Lee JH, Kim KO, Ju YM. Polyethylene oxide additive-entrapped polyvinyl chloride as a new blood bag material. J Biomed Mater Res, Part A. 1999;48:328–34.

    Article  CAS  Google Scholar 

  44. Nakafuku C, Sakoda M. Melting and crystallization of poly(L-lactic acid) and poly(ethylene oxide) binary mixture. Polym J. 1993;25:909–17.

    Article  CAS  Google Scholar 

  45. Nakafuku C. High pressure crystallization of poly(L-lactic acid) in a binary mixture with poly(ethylene oxide). Polym J. 1994;26:680–7.

    Article  CAS  Google Scholar 

  46. Nakaruku C. Effects of molecular weight on the melting and crystallization of poly(L-lactic acid) in a mixture with poly(ethylene oxide). Polym J. 1996;28:568–75.

    Article  Google Scholar 

  47. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1993;37:5849–57.

    Article  Google Scholar 

  48. Rufino TDC, Felisberti MI. Confined PEO crystallisation in immiscible PEO/PLLA blends. RSC Adv. 2016;6:30937–50.

    Article  CAS  Google Scholar 

  49. Chiu FC, Kan CY, Yang JC. The effects of melt annealing and counterpart’s molecular weight on the thermal properties and phase morphology of poly(L-lactide)-based blends. J Polym Sci, Part B: Polym Phys. 2009;47:1497–510.

    Article  CAS  Google Scholar 

  50. Li J, Schultz JM, Chan C. The relationship between morphology and impact toughness of poly(L-lactic acid)/poly(ethylene oxide) blends. Polymer. 2015;63:179–88.

    Article  CAS  Google Scholar 

  51. Radhakrishnan S, Venkatachalapathy PD. Effect of casting solvent on the crystallization in PEO/PMMA blends. Polymer. 1996;3:3749–52.

    Article  Google Scholar 

  52. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.

    Article  CAS  Google Scholar 

  53. Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J Polym Sci, Part B: Polym Phys. 2011;49:409–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51573170, U1704162, and 11432003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Tong, B., Ye, A. et al. Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator. J Therm Anal Calorim 135, 3107–3114 (2019). https://doi.org/10.1007/s10973-018-7528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7528-9

Keywords

Navigation