Skip to main content
Log in

Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study provides numerical analysis of the free convection of copper–water-based nanofluid filling a triangular cavity with semicircular bottom wall. The cavity sidewalls are maintained at cold temperature, while the semicircular wall is maintained at hot temperature. The other wall segments are thermally insulated. To control the energy transport within the cavity, a uniform magnetic field is applied horizontally. The physical domain is discretized according to the control volume finite element method which has been used to solve the governing equations. The physical and geometrical aspects of the current problem are investigated by inspecting the impacts of Rayleigh number, Hartman number, aspect ratio and the volume fraction of the Cu nanoparticles. Decreasing the radius of the hot semicircle enlarges the average Nusselt number at the absence of the magnetic field. When the magnetic field is applied, this effect is conversed within Ra ≤ 104. This conversed impact does not hold up when Ra is raised to 105. The numerical results are correlated in a sophisticated correlation of the average Nusselt number with other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ha :

Hartmann number (–)

Pr :

Prandtl number (–)

B 0 :

Magnetic field (–)

c :

Specific heat (J kg−1 K−1)

T :

Temperature (K)

Nu loc. :

Local Nusselt number (–)

Nu ave. :

Average Nusselt number (–)

k :

Thermal conductivity (W m−1 K−1)

u, v :

Velocity components in x and y directions, respectively (m s−1)

Ra :

Rayleigh number (–)

AR:

Aspect ratio (–)

p :

Pressure term (Pa)

β :

Thermal expansion coefficient (K−1)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

σ :

Electrical conductivity (Ω−1 m−1)

ϕ :

Nanoparticles volume fraction (–)

θ :

Dimensionless temperature

f:

Base fluid

nf:

Nanofluid

s:

Solid nanoparticles

References

  1. Chamkha AJ, Ismael MA. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. J Therm Sci Eng Appl. 2016;8:031009–031009-12.

    Article  CAS  Google Scholar 

  2. Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. Int J Heat Mass Transf. 2016;98:758–67.

    Article  CAS  Google Scholar 

  3. Bhatti MM, Rashidi MM. Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface. Int J Appl Comput Math. 2017;3:2275–89.

    Article  Google Scholar 

  4. Tayebi T, Chamkha AJ. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid. Comput Therm Sci. 2017;9:405–21.

    Article  Google Scholar 

  5. Dogonchi AS, Ganji DD. Impact of Cattaneo–Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect. J Taiwan Inst Chem Eng. 2017;80:52–63.

    Article  CAS  Google Scholar 

  6. Dogonchi AS, Ganji DD. Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect. Powder Technol. 2017;318:390–400.

    Article  CAS  Google Scholar 

  7. Ellahi R, Hassan M, Zeeshan A. Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia Pac J Chem Eng. 2016;11:179–86.

    Article  CAS  Google Scholar 

  8. Dib A, Haiahem A, Bou-said B. Approximate analytical solution of squeezing unsteady nanofluid flow. Powder Technol. 2015;269:193–9.

    Article  CAS  Google Scholar 

  9. Hayat T, Hussain Z, Alsaedi A, Mustafa M. Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions. J Taiwan Inst Chem Eng. 2016. https://doi.org/10.1016/j.jtice.2016.11.002.

    Article  Google Scholar 

  10. Hayat T, Imtiaz M, Alsaedi A, Alzahrani F. Effects of homogeneous–heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk. J Mol Liq. 2016;216:845–55.

    Article  CAS  Google Scholar 

  11. Rashidi MM, Ganesh NV, Hakeem AKA, Ganga B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq. 2014;198:234–8.

    Article  CAS  Google Scholar 

  12. Bhatti MM, Rashidi MM. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq. 2016;221:567–73.

    Article  CAS  Google Scholar 

  13. Dogonchi AS, Chamkha Ali J, Seyyedi SM, Ganji DD. Radiative nanofluid flow and heat transfer between parallel disks with penetrable and stretchable walls considering Cattaneo–Christov heat flux model. Heat Transf Asian Res. 2018;47:735–53. https://doi.org/10.1002/htj.21339.

    Article  Google Scholar 

  14. Dogonchi AS, Alizadeh M, Ganji DD. Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Adv Powder Technol. 2017;28:1815–25.

    Article  CAS  Google Scholar 

  15. Dogonchi AS, Divsalar K, Ganji DD. Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation. Comput Methods Appl Mech Eng. 2016;310:58–76.

    Article  Google Scholar 

  16. Dogonchi AS, Ganji DD. Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion. J Mol Liq. 2016;223:521–7.

    Article  CAS  Google Scholar 

  17. Dogonchi AS, Ganji DD. Effects of Cattaneo–Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts. Indian J Phys. 2018;92:757–66.

    Article  CAS  Google Scholar 

  18. Alizadeh M, Dogonchi AS, Ganji DD. Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Stud Therm Eng. 2018;12:319–32.

    Article  Google Scholar 

  19. Dogonchi AS, Ganji DD. Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion. J Taiwan Inst Chem Eng. 2016;69:1–13.

    Article  CAS  Google Scholar 

  20. Dogonchi AS, Ganji DD. Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J Mol Liq. 2016;220:592–603.

    Article  CAS  Google Scholar 

  21. RamReddy Ch, Murthy PVSN, Chamkha AJ, Rashad AM. Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int J Heat Mass Transf. 2013;64:384–92.

    Article  Google Scholar 

  22. Selimefendigil F, Oztop HF. MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder. J Taiwan Inst Chem Eng. 2014;45:2150–62.

    Article  CAS  Google Scholar 

  23. Selimefendigil F, Oztop HF. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf. 2014;78:741–54.

    Article  Google Scholar 

  24. Selimefendigil F, Oztop HF, Chamkha AJ. MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains. J Magn Magn Mater. 2016;406:266–81.

    Article  CAS  Google Scholar 

  25. Selimefendigil F, Oztop HF. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2018;117:331–43.

    Article  CAS  Google Scholar 

  26. Selimefendigil F, Öztop HF. Cooling of a partially elastic isothermal surface by nanofluids jet impingement. J Heat Transf. 2018;140(4):042205.

    Article  CAS  Google Scholar 

  27. Selimefendigil F, Oztop HF. Numerical study and pod-based prediction of natural convection in a ferrofluids–filled triangular cavity with generalized neural network. Numer Heat Transf Part A Appl. 2016;67(10):1136–61.

    Article  Google Scholar 

  28. Sheremet MA, Grosan T, Pop I. Natural convection and entropy generation in a square cavity with variable temperature side walls filled with a nanofluid: Buongiorno’s mathematical model. Entropy. 2017;19:337. https://doi.org/10.3390/e19070337.

    Article  CAS  Google Scholar 

  29. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15.

    Article  CAS  Google Scholar 

  30. Alsabery A, Chamkha AJ, Hashim I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835–50.

    Article  Google Scholar 

  31. Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int J Heat Mass Transf. 2017;104:878–89.

    Article  CAS  Google Scholar 

  32. Sheremet MA, Revnic C, Pop I. Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect. Appl Math Comput. 2017;299:1–15.

    Google Scholar 

  33. Bararnia H, Hooman K, Ganji DD. Natural convection in a nanofluid filled portion cavity; the Lattice-Boltzmann method. Numer Heat Transf Part A. 2011;59:487–502.

    Article  Google Scholar 

  34. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35:657–65.

    Article  CAS  Google Scholar 

  35. Jou RY, Tzeng SC. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int Commun Heat Mass Transf. 2006;33:727–36.

    Article  Google Scholar 

  36. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7339-z.

    Article  Google Scholar 

  37. Selimefendigil F, Oztop HF, Abu-Hamdeh N. Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. Entropy. 2016;18(2):43.

    Article  CAS  Google Scholar 

  38. Sheremet MA, Cimpean DS, Pop I. Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis. Appl Therm Eng. 2017;113:413–8.

    Article  CAS  Google Scholar 

  39. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci. 2007;46:467–78.

    Article  Google Scholar 

  40. Chamkha AJ. Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer Heat Transf A. 2002;41:65–87.

    Article  Google Scholar 

  41. Ben-Nakhi A, Chamkha AJ. Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf A. 2006;50:381–99.

    Article  Google Scholar 

  42. Chamkha AJ, Grosan T, Pop I. Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf. 2002;29:1119–27.

    Article  Google Scholar 

  43. Selimefendigil F, Oztop HF. Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity. Int Commun Heat Mass Transf. 2018;45:182–96.

    Article  CAS  Google Scholar 

  44. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7396-3.

    Article  Google Scholar 

  45. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  46. De Vahl Davis G. Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Methods Fluids. 1962;3:249–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Dogonchi, Muneer A. Ismael or Ali J. Chamkha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogonchi, A.S., Ismael, M.A., Chamkha, A.J. et al. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim 135, 3485–3497 (2019). https://doi.org/10.1007/s10973-018-7520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7520-4

Keywords

Navigation