Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 3363–3373 | Cite as

Investigation on the dissolution behavior of 2HNIW·HMX co-crystal prepared by a solvent/non-solvent method in N,N-dimethylformamide at T = (298.15–318.15) K

  • Shijie Zhang
  • Jiaoqiang ZhangEmail author
  • Kaichang KouEmail author
  • Qian Jia
  • Yunlong Xu
  • Sofiane Zerraza
  • Ning Liu
  • Rongzu Hu


2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexazisowurtzitane (HNIW)·1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) co-crystal in a 2:1 molar ratio was prepared by a solvent/non-solvent method, and the co-crystal has been characterized by several methods. The enthalpies of dissolution of 2HNIW·HMX co-crystal in N,N-dimethylformamide at different temperatures were measured by a DC08-1 Calvet microcalorimeter under standard atmospheric pressure, and it is indicated that the dissolutions are exothermic process. The empirical formulae for the calculation of the molar enthalpy (\(\Delta_{\text{diss}} H\)) of dissolution, relative partial molar enthalpy (\(\Delta_{\text{diss}} H_{\text{partial}}\)), relative apparent molar enthalpy (\(\Delta_{\text{diss}} H_{\text{apparent}}\)), and enthalpy of dilution (\(\Delta_{\text{dil}} H_{1,2}\)) at 298.15 K are obtained. The differential enthalpies (\(\Delta_{\text{dif}} H\)) and kinetic equations describing the dissolution process at different temperatures are deduced. Furthermore, the apparent activation energy E = 10.54 ± 0.22 kJ mol-1 and pre-exponential constant A = 0.34 ± 0.03 s−1 of 2HNIW·HMX co-crystal are obtained. The standard molar Gibbs free energy of activation (\(\Delta G_{ \ne }^{\theta }\)) at different temperatures is 86.44 ± 0.02 kJ mol−1 (298.15 K), 88.02 ± 0.03 kJ mol−1 (303.15 K), 89.61 ± 0.01 kJ mol−1 (308.15 K), 91.18 ± 0.01 kJ mol−1 (313.15 K), and 92.75 ± 0.02 kJ mol−1 (318.15 K), respectively. The standard molar entropy of activation (\(\Delta S_{ \ne }^{\theta }\)) and standard molar enthalpy of activation (\(\Delta H_{ \ne }^{\theta }\)) are − 262.55 ± 0.72 J mol−1 K−1 and 7.98 ± 0.22 kJ mol−1, respectively.


2HNIW·HMX co-crystal Solvent/non-solvent Enthalpies Dissolution kinetic equation Kinetic and thermodynamic parameters 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant numbers 21673182 and 21703168).

Supplementary material

10973_2018_7502_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 66 kb)


  1. 1.
    Wang YP, Yang ZW, Li HZ, Zhou XQ, Zhang Q, Wang JH, et al. A novel cocrystal explosive of HNIW with good comprehensive properties. Propell Explos Pyrotech. 2014;39(4):590–6.Google Scholar
  2. 2.
    Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H. Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim. 2003;73(3):913–22.Google Scholar
  3. 3.
    Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–55.Google Scholar
  4. 4.
    Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? ChemInform. 2004;35(50):1889.Google Scholar
  5. 5.
    Bolton O, Matzger AJ. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed. 2011;50(38):8960–3.Google Scholar
  6. 6.
    Sun XW, Yin QX, Ding SP, Shen ZM, Bao Y, Gong JB, et al. Solid–liquid phase equilibrium and ternary phase diagrams of ibuprofen-nicotinamide cocrystals in ethanol and ethanol/water mixtures at (298.15 and 313.15) K. J Chem Eng Data. 2015;60(4):1166–72.Google Scholar
  7. 7.
    Yao GB, Wang L, Sun YP, Yi JK, Meng L, Zhao HK. Ternary phase diagram for systems of succinic acid + urea + water, glutaric acid + urea + water, and adipic acid + urea + water at (288.15 and 303.15) K. J Chem Eng Data. 2014;59(12):4081–9.Google Scholar
  8. 8.
    Lara-Ochoa F, Espinosa-Pérez G. Cocrystals definitions. Supramol Chem. 2007;19(8):553–7.Google Scholar
  9. 9.
    Wu J, Zhang JG, Li T, Li ZM, Zhang TL. A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv. 2015;5(36):28354–9.Google Scholar
  10. 10.
    Yang ZW, Wang YP, Zhou JH, Li HZ, Huang H, Nie FD. Preparation and performance of a BTF/DNB cocrystal explosive. Propell Explos Pyrotech. 2014;39(1):9–13.Google Scholar
  11. 11.
    Bennion JC, Siddiqi ZR, Matzger AJ. A melt castable energetic cocrystal. Chem Commun. 2017;53(45):6065–8.Google Scholar
  12. 12.
    Yang ZW, Li HZ, Zhou XQ, Zhang CY, Huang H, Li JS, et al. Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des. 2012;12(11):5155–8.Google Scholar
  13. 13.
    Song XL, Wang Y, An CW, Guo XD, Li FS. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Hazard Mater. 2008;159(2):222–9.PubMedGoogle Scholar
  14. 14.
    Rylance J, Small RWH, Stubley D. Enthalpies of solution of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in acetone. J Chem Thermodyn. 1974;6(11):1103–6.Google Scholar
  15. 15.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst Growth Des. 2012;12(9):4311–4.Google Scholar
  16. 16.
    Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM. Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A. 2014;2(34):13898–904.Google Scholar
  17. 17.
    Gao B, Wang DJ, Zhang J, Hu YJ, Shen JP, Wang J, et al. Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method. J Mater Chem A. 2014;2(47):19969–74.Google Scholar
  18. 18.
    Sun SH, Zhang HB, Liu Y, Xu JJ, Huang SL, Wang SM, et al. Transitions from separately crystalized CL-20 and HMX to CL-20/HMX cocrystal based on solvent media. Cryst Growth Des. 2017;18:77–84.Google Scholar
  19. 19.
    Yang GC, Nie FD, Huang H, Zhao L, Pang WT. Preparation and characterization of Nano-TATB explosive. Propell Explos Pyrotech. 2006;31(5):390–4.Google Scholar
  20. 20.
    Li XH, Chen GM, Ma YM, Feng L, Zhao HZ, Jiang L, et al. Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent–nonsolvent coating. Polymer. 2006;47(2):506–9.Google Scholar
  21. 21.
    Xu HF, Duan XH, Li HZ, Pei CH. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv. 2015;5(116):95764–70.Google Scholar
  22. 22.
    Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD. Preparation and performance of a HNIW/TNT cocrystal explosive. Propell Explos Pyrotech. 2013;38(4):495–501.Google Scholar
  23. 23.
    Henwood SQ, de Villiers MM, Liebenberg W, Lötter AP. Solubility and dissolution properties of generic rifampicin raw materials. Drug Dev Ind Pharm. 2000;26(4):403.PubMedGoogle Scholar
  24. 24.
    Hamlin WE, Higuchi WI. Dissolution rate-solubility behavior of 3-(1-methyl-2-pyrrolidinyl)-indole as a function of hydrogen-ion concentration. J Pharm Sci. 2010;55(2):205–7.Google Scholar
  25. 25.
    Rui Kang T. Progress in the studies of interfacial energy and kinetics of crystal growth/dissolution. Prog Chem. 2005;2:022.Google Scholar
  26. 26.
    Yang Q, Yang GL, Ge J, Yang LL, Song XX, Wei Q, et al. Thermodynamic properties of 3D copper(II)-MOFs assembled by 1 H -tetrazole. J Therm Anal Calorim. 2016;128(2):1–8.Google Scholar
  27. 27.
    Yoo C, Cynn H. Equation of state, phase transition, decomposition of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures. J Chem Phys. 1999;111(22):10229–35.Google Scholar
  28. 28.
    Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem B. 2007;111(44):12715–22.PubMedGoogle Scholar
  29. 29.
    Turcotte R, Vachon M, Kwok QS, Wang RP, Jones DE. Thermal study of HNIW (CL-20). Thermochim Acta. 2005;433(1):105–15.Google Scholar
  30. 30.
    Niu H, Chen SS, Jin SH, Li LJ, Wang XJ, Zhang CY, et al. Dissolution properties of 5,5′-bistetrazole-1,1′-dihydroxy and disodium 5,5′-bistetrazole-1,1′-diolate in dimethyl sulfoxide. J Therm Anal Calorim. 2017;128(1):615–20.Google Scholar
  31. 31.
    Niu H, Chen SS, Jin SH, Shu QG, Li LJ, Shang FQ. Dissolution properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate and disodium 5,5′-bistetrazole-1,1′-diolate in water. J Energ Mater. 2016;34(4):416–25.Google Scholar
  32. 32.
    Xiao LB, Zhao FQ, Xing XL, Huang HF. Dissolution properties of ammonium dipicrylamide in dimethyl sulfoxide and N-methyl pyrrolidone. Thermochim Acta. 2012;546(546):138–42.Google Scholar
  33. 33.
    Hu RZ, Zhao FQ, Gao HX, Song JR. Fundamentals and application of calorimetry. Beijing: Science Press; 2008.Google Scholar
  34. 34.
    Xing XL, Xue L, Zhao FQ, Gao HX, Hu RZ. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 2009;491(1):35–8.Google Scholar
  35. 35.
    Xue L, Zhao FQ, Xing XL, Zhou ZM, Wang K, Gao HX, et al. Dissolution properties of 1,2,4-triazole nitrate in N-methyl pyrrolidone. J Chem Eng Data. 2011;56(2):259–62.Google Scholar
  36. 36.
    Xiao LB, Zhao FQ, Luo Y, Gao HX, Li N, Meng ZH, et al. Thermal behavior and safety of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane. J Therm Anal Calorim. 2015;121(2):1–4.Google Scholar
  37. 37.
    Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.Google Scholar
  38. 38.
    Xue L, Zhao FQ, Xing XL, Zhou ZM, Wang K, Gao HX, et al. Thermal behavior of 3,4,5-triamino-1,2,4-triazole dinitramide. J Therm Anal Calorim. 2010;102(3):989–92.Google Scholar
  39. 39.
    Li N, Zhao FQ, Luo Y, Gao HX, Yao EG, Zhou ZM, et al. Dissolution thermokinetics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in dimethyl sulfoxide. J Therm Anal Calorim. 2015;122(2):1023–7.Google Scholar
  40. 40.
    Xue L, Xing X, Zhou Z, Wang K, Xu S, Yi J, et al. Dissolution thermodynamics of 1,2,3-triazole nitrate in water. J Solut Chem. 2012;41(1):17–24.Google Scholar
  41. 41.
    Niu H, Chen S, Jin S, Li L, Shu Q. Dissolution thermodynamics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in water at T = (298.15, 303.15, 308.15 and 313.15 K). J Therm Anal Calorim. 2016;128(3):1–6.Google Scholar
  42. 42.
    Kolker AM, Safonova LP. Molar heat capacities of the (water + acetonitrile) mixtures at T = (283.15, 298.15, 313.15, and 328.15) K. J Chem Thermodyn. 2010;42(10):1209–12.Google Scholar
  43. 43.
    Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.Google Scholar
  44. 44.
    Yan B, Li HY, Zhao NN, Ma HX, Song JR, Zhao FQ, et al. Thermodynamic properties, detonation characterization and free radical of N-2′, 4′-dinitrophenyl-3, 3-dinitroazetidine. J Chem Thermodyn. 2014;69:152–6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Shijie Zhang
    • 1
  • Jiaoqiang Zhang
    • 1
    Email author
  • Kaichang Kou
    • 1
    Email author
  • Qian Jia
    • 1
  • Yunlong Xu
    • 1
  • Sofiane Zerraza
    • 1
  • Ning Liu
    • 2
  • Rongzu Hu
    • 2
  1. 1.Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Xi’an Modern Chemistry InstituteXi’anChina

Personalised recommendations