Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal degradation, kinetic analysis and evaluation of biological activity on human melanoma for artemisinin

  • 119 Accesses

  • 1 Citations


In this paper, the bioactive compound artemisinin (ART) was evaluated by instrumental techniques, regarding its thermal stability and mechanism of decomposition, but for the biological activity as well, using in vitro techniques, namely the cytotoxic activity evaluation on two cell types (HaCaT and A375) employing the MTT proliferation method, and the antioxidant activity (AOA) using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. The results of the isoconversional kinetic study first lead to an indication of complex decomposition mechanism, which was later confirmed by the modified nonparametric kinetics (NPK) method. According to the NPK method, it was shown that ART is mainly degraded by the involvement of two parallel processes, with different energetic contributions that are due to chemical and physical transformations. However, the estimated mean apparent activation energy yields similar results with all four kinetic methods, ranging between 61.3 and 68.7 kJ mol−1, confirming the low thermal stability of the compound, which can be explained by the presence of reactive functional groups, such as the peroxide one. Regarding the biological activity of ART, it was shown that it can be used to induce cell growth arrest on human melanoma cell line A375, but affecting in a smaller measure the viability of HaCaT cell line, while the AOA is negligible, in comparison with standard antioxidants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Liao F. Discovery of artemisinin (Qinghaosu). Molecules. 2009;14(12):5362–6.

  2. 2.

    Singh NP, Lai HC. Artemisinin induces apoptosis in human cancer cells. Anticancer Res. 2004;24(4):2277–80.

  3. 3.

    Efferth T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017;46:65–83.

  4. 4.

    Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22(20):3138–51.

  5. 5.

    Mondal A, Chatterji U. Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 infected human cervical cancer cells. J Cell Biochem. 2015;116(9):1968–81.

  6. 6.

    Jana S, Iram S, Thomas J, Liekens S, Dehaen W. Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg Med Chem. 2017;25(14):3671–6.

  7. 7.

    Li X, Zhou Y, Liu Y, Zhang X, Chen T, Chen K, Ba Q, Li J, Liu H, Wang H. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer. EBioMedicine. 2016;14:44–54.

  8. 8.

    Kakran M, Sahoo NG, Li L, Judeh Z. Dissolution enhancement of artemisinin with β-cyclodextrin. Chem Pharm Bull (Tokyo). 2011;59(5):646–52.

  9. 9.

    Reg CAS, Artemisinin R. Artemisinin (Artemisinin). Int Pharmacopoeia Sixth Ed. 2016; 2014–6.

  10. 10.

    Lapkin AA, Plucinski PK, Cutler M. Comparative assessment of technologies for extraction of artemisinin. J Nat Prod. 2006;69(11):1653–64.

  11. 11.

    Kannan R, Sahal D, Chauhan VS. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem Biol. 2002;9(3):321–32.

  12. 12.

    Lai HC, Singh NP, Sasaki T. Development of artemisinin compounds for cancer treatment. Invest New Drugs. 2013;31(1):230–46.

  13. 13.

    Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–55.

  14. 14.

    Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin Ther Targets. 2005;9(5):995–1007.

  15. 15.

    Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, Tufano MA. Artemisinin reduces human melanoma cell migration by down-regulating αVβ3 integrin and reducing metalloproteinase 2 production. Invest New Drugs. 2009;27(5):412–8.

  16. 16.

    Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29(1):15–21.

  17. 17.

    Ledeti A, Vlase G, Vlase T, Circioban D, Dehelean C, Ledeti I. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim. 2018;131(1):155–65.

  18. 18.

    Ledeti I, Vlase G, Vlase T, Murariu M, Trandafirescu C, Soica C, Suta LM, Dehelean C, Ledeti A. Non-isothermal isoconversional kinetic study regarding the degradation of albendazole. Rev Chim. 2016;67(3):549–52.

  19. 19.

    Ledeti A, Vlase G, Circioban D, Ledeti I, Stelea L, Vlase T. Comparative stability of levodopa under thermal stress in both oxidative and inert media. Rev Chim. 2016;67(12):2648–50.

  20. 20.

    Olariu T, Suta L, Popoiu C, Ledeti IV, Simu GM. Alternative synthesis of paracetamol and aspirin under non-conventional conditions. Rev Chim. 2014;65(6):633–5.

  21. 21.

    Ledeti I, Simu G, Vlase G, Vlase T, Olariu T, Savoiu G, Suta L, Popoiu C, Fulias A. Ni (II) coordination compound with acetaminophen synthesis and characterization. Rev Chim. 2014;65(5):556–9.

  22. 22.

    Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.

  23. 23.

    Manzocco L, Anese M, Nicoli M. Antioxidant properties of tea extracts as affected by processing. LWT Food Sci Technol. 1998;31(7–8):694–8.

  24. 24. Accessed 16 Nov 2017.

  25. 25.

    Lawal A, Umar RA, Abubakar MG, Faruk UZ, Wali U. FTIR and UV–visible spectrophotometeric analyses of artemisinin and its derivatives. J Pharm Biomed Sci. 2012;24(2):6–14.

  26. 26.

    Ansari MT, Iqbal I, Sunderland VB. Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch Pharm Res. 2009;32(1):155–65.

  27. 27.

    Yu H, Zhao X, Zu Y, Zhang X, Zu B, Zhang X. Preparation and characterization of micronized artemisinin via a rapid expansion of supercritical solutions (RESS) method. Int J Mol Sci. 2012;13(12):5060–73.

  28. 28.

    Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, Ledeti I, Vlase T, Murariu M. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2018;131(2):1881–8.

  29. 29.

    Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu M. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164.

  30. 30.

    Popovici AR, Vlase G, Vlase T, Suta LM, Popoiu C, Ledeti I, Iovanescu G, Fulias A. Local anesthetic agents: III. Study of solid dosage forms with pharmaceutical excipients. Rev Chim. 2015;66(7):1046–51.

  31. 31.

    Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B Polym Lett. 1969;7(1):41–6.

  32. 32.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

  33. 33.

    Akahira T, Sunose T. Research report, trans joint convention of four electrical institutes. Chiba Inst Technol (Sci Technol). 1971;16:22–31.

  34. 34.

    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

  35. 35.

    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

  36. 36.

    Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data. Thermochim Acta. 1998;316(1):37–45.

  37. 37.

    Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56(2):843–9.

  38. 38.

    Sempere J, Nomen R, Serra R, Soravilla J. The NPK method. Thermochim Acta. 2002;388(1–2):407–14.

  39. 39.

    Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid-state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

  40. 40.

    Wall ME, Rechtsteiner A, Rocha LM. Singular value decomposition and principal component analysis. In: Berrar DP, Dunitzky W, Granzow M, editors. A Pract. Approach to microarray data anal. Boston: Kluwer; 2003. p. 91–109.

  41. 41.

    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

  42. 42.

    Avram S, Coricovac DE, Pavel IZ, et al. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol Rep. 2017;38(1):89–99.

  43. 43.

    Ledeti I, Avram S, Bercean V, et al. Solid-state characterization and biological activity of betulonic acid derivatives. Molecules. 2015;20(12):22691–702.

  44. 44.

    Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014;142(1):126–39.

  45. 45.

    Efferth T. Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol. 2017;139:56–70.

Download references

Author information

Correspondence to Ionut Ledeti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Circioban, D., Ledeti, A., Vlase, G. et al. Thermal degradation, kinetic analysis and evaluation of biological activity on human melanoma for artemisinin. J Therm Anal Calorim 134, 741–748 (2018).

Download citation


  • Artemisinin
  • Kinetic study
  • Human melanoma cell line A375
  • HaCaT cell line
  • Antioxidant