Skip to main content
Log in

Localized solar heating via graphene oxide nanofluid for direct steam generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper, the performance of the graphene oxide in the solar steam generation has experimentally been examined. For this purpose, a setup was built for measuring the evaporation rate, which consists of a solar simulator with a xenon lamp as a radiation source, a pyranometer for light intensity measuring, and a sensory system for measuring the temperature and the mass. Then, the nanofluid with three nanoparticle mass concentrations of 0.001, 0.002, and 0.004% was prepared and exposed to the light intensity of 3.5 Suns (3.5 kW m−2). Finally, the effects of the light intensity variations on the solar steam generation were studied at the steady and transition conditions. The results showed that the examined carbon nanostructure is efficiently capable of direct solar energy harvesting, such that a maximum total efficiency of 78.9% at 3.5 Suns can be obtained, while the corresponding value for the case of pure water is about 54%. Furthermore, it was found that increasing the light intensity from 1.5 to 3.5 Suns enhances the evaporation flux rate, yet, reduces the evaporation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

Abs:

Light absorption (a.u.)

C p :

Specific heat capacity (kJ kg−1 K−1)

h fg :

Enthalpy of phase change (kJ kg−1)

I :

Light intensity (kW m−2)

M :

The initial mass of working fluid (g)

\(\dot{m}\) :

Water evaporation flux rate (kg m−2 h−1)

T :

Temperature (°C)

t :

Time (s)

\(\eta\) :

Efficiency (%)

w :

Nanoparticle mass fraction (%)

amb:

Ambient

References

  1. Ghafurian MM, Niazmand H. New approach for estimating the cooling capacity of the absorption and compression chillers in a trigeneration system. Int J Refrig. 2018;86:89–106.

    Article  Google Scholar 

  2. Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl Mater Interface. 2016;8:23412–8.

    Article  CAS  Google Scholar 

  3. Mahian O, Kianifar A, Zeinali Heris A, Wen D, Sahine AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.

    Article  CAS  Google Scholar 

  4. Hjerrild NE, Taylor RA. Boosting solar energy conversion with nanofluids. Phys Today. 2017;70(12):40–5.

    Article  CAS  Google Scholar 

  5. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ. Solar vapor generation enabled by nanoparticles. ACS Nano. 2013;7:42–9.

    Article  CAS  PubMed  Google Scholar 

  6. Neumann O, Feronti C, Neumann AD, Dong A, Schell K, Lu B, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc Natl Acad Sci. 2013;110:11677–81.

    Article  PubMed  Google Scholar 

  7. Ni G, Miljkovic N, Ghasemi H, Huang X, Boriskina SV, Lin C-T, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy. 2015;17:290–301.

    Article  CAS  Google Scholar 

  8. Li H, He Y, Liu Z, Huang Y, Jiang B. Synchronous steam generation and heat collection in a broadband Ag@TiO2 core–shell nanoparticle-based receiver. Appl Therm Eng. 2017;121:617–27.

    Article  CAS  Google Scholar 

  9. Jin H, Lin G, Bai L, Zeiny A, Wen D. Steam generation in a nanoparticle-based solar receiver. Nano Energy. 2016;28:397–406.

    Article  CAS  Google Scholar 

  10. Wang X, He Y, Cheng G, Shi L, Liu X, Zhu J. Direct vapor generation through localized solar heating via carbon nanotube nanofluid. Energy Convers Manag. 2016;130:176–83.

    Article  CAS  Google Scholar 

  11. Amjad M, Raza Gh, Xin Y, Pervaiz Sh, Xu Ji DuX, Wen D. Volumetric solar heating and steam generation via gold nanofluids. Appl Energy. 2017;206:393–400.

    Article  CAS  Google Scholar 

  12. Fu Y, Mei T, Wang G, Guo A, Dai G, Wang Sh, Wang J, Li J, Wang X. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl Therm Eng. 2017;114:961–8.

    Article  CAS  Google Scholar 

  13. Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol Energy. 2017;157:35–46.

    Article  CAS  Google Scholar 

  14. Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Convers Manag. 2017;149:401–8.

    Article  CAS  Google Scholar 

  15. Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photo thermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater. 2017;29:1603730.

    Article  CAS  Google Scholar 

  16. Liu X, Wang X, Huang J, Cheng G, He Y. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid. Appl Energy. 2018;220:302–12.

    Article  CAS  Google Scholar 

  17. Wang X, He Y, Liu X, Zhu J. Enhanced direct steam generation via a bio-inspired solar heating, method using carbon nanotube films. Powder Technol. 2017;321:276–85.

    Article  CAS  Google Scholar 

  18. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  19. Ahmed Sharafeldina M, Gróf G, Mahian O. Experimental study on the performance of a flat-plate collector using WO3/water nanofluids. Energy. 2017;141:2436–44.

    Article  CAS  Google Scholar 

  20. Ghafurian MM, Niazmand H, Ebrahimnia bejestan E. Performance evaluation of multi-wall carbon nanotube in solar fresh water production. Articles in Press, Amirkabir Journal of Mechanical Engineering, Accepted Manuscript, Available Online from 12 May 2018.

  21. Zielinski MS, Choi JW, La Grange T, Modestino M, Hashemi SM, Pu Y, Birkhold S, Hubbell JA, Psaltis D. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 2016;13:2159–67.

    Article  CAS  Google Scholar 

  22. Swinehar DF. The Beer–Lambert law. J Chem Educ. 1962;39:333.

    Article  Google Scholar 

  23. Wang X, He Y, Liu X, Cheng G, Zhu J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl Energy. 2017;195:414–25.

    Article  CAS  Google Scholar 

  24. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, et al. Solar steam generation by heat localization. Nat Commun. 2014;5:4449.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Niazmand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafurian, M.M., Niazmand, H., Ebrahimnia-Bajestan, E. et al. Localized solar heating via graphene oxide nanofluid for direct steam generation. J Therm Anal Calorim 135, 1443–1449 (2019). https://doi.org/10.1007/s10973-018-7496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7496-0

Keywords

Navigation