Skip to main content
Log in

Preparation and characterization of nitrogen-rich bis-1-methylimidazole1H,1′H-5,5′-bistetrazole-1,1′-diolate energetic salt

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new nitrogen-rich energetic salt of bis-1-methylimidazole 1H,1′H-5,5′-bistetrazole-1,1′-diolate salt, (1-M)2BTO, was synthesized and characterized (FT-IR, 1H NMR, 13C NMR, elemental analysis, and X-ray single-crystal diffraction). Results indicated that (1-M)2BTO crystallizes in the triclinic space group P-1. The thermal decomposition behavior of (1-M)2BTO was determined by differential scanning calorimetry (DSC) and thermogravimetric tandem infrared spectroscopy. The decomposition peak temperature of (1-M)2BTO was 530 K, which suggested that the salt is strong heat resistance. The apparent activation energies were 130.56 kJ mol−1 (Kissinger’s method) and 132.50 kJ mol−1 (Ozawa’s method), respectively. The enthalpy of formation for the salt was calculated as 917.3 kJ mol−1. The detonation velocity and detonation pressure of (1-M)2BTO were 7448 m s−1 and 20.7 GPa, respectively, using the Kamlet-Jacobs equation. Furthermore, the sensitivity test results showed that its impact sensitivity is greater than 50 J and friction sensitivity is 180 N, indicating that it has a lower sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  PubMed  Google Scholar 

  2. Cumming A. Energetic materials and the environment. Propellants Explos Pyrot. 2017;42:5–6.

    Article  CAS  Google Scholar 

  3. Bachmann WE, Sheehan JC. A new method of preparing the high explosive RDX. J Am Chem Soc. 1949;71:1842–5.

    Article  CAS  Google Scholar 

  4. Monteilrivera F, Paquet L, Halasz A, Montgomery MT, Hawari J. Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: product distribution. Environ Sci and Technol. 2005;39:9725–31.

    Article  CAS  Google Scholar 

  5. Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI. Reproduction and survival of Eisenia fetida in a sandy loam soil amended with the nitro-heterocyclic explosives RDX and HMX. The 7th international symposium on earthworm. Ecology. 2003;47:657–62.

    CAS  Google Scholar 

  6. Wang RH, Xu HY, Guo Y, Sa RJ, Shreeve JM. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc. 2010;132:11904–5.

    Article  CAS  PubMed  Google Scholar 

  7. Yin P, Zhang QH, Zhang JH, Parrish DA, Shreeve JM. N-trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. J Mater Chem A. 2013;1:7500–10.

    Article  CAS  Google Scholar 

  8. Feng YY, Liu XY, Duan LQ, Yang Q, Wei Q, Xie G, Chen SP, Yang XW, Gao SL. In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity. Dalton Trans. 2015;44:2333–9.

    Article  CAS  PubMed  Google Scholar 

  9. He L, Tao GH, Parrish DA, Shreeve JM. Impact insensitive dinitromethanide salts. Chem Commun. 2013;49:10329–31.

    Article  CAS  Google Scholar 

  10. Zhang WQ, Zhang JH, Deng MC, Qi XJ, Nie FD, Zhang QH. A promising high-energy-density material. Nat Commun. 2017;8:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng YG, Bi YG, Zhao WY, Zhang TL. Anionic metal-organic frameworks lead the way to eco-friendly high-energy-density materials. J Mater Chem A. 2016;4:7596–600.

    Article  CAS  Google Scholar 

  12. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161:589–607.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang JH, Zhang QH, Vo TT, Parrish DA, Shreeve JM. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. J Am Chem Soc. 2015;137:1697–704.

    Article  CAS  PubMed  Google Scholar 

  14. Klapoetke TM, Preimesser A, Stierstorfer J. Energetic derivatives of 4,4′,5,5′-tetranitro-2, 2′-bisimidazole (TNBI). Z Anorg Allg Chem. 2012;638:1278–86.

    Article  CAS  Google Scholar 

  15. Klapoetke TM, Martin FA, Mayr NT, Stierstorfer J. Synthesis and characterization of 3,5-diamino-1,2,4-triazolium dinitramide. Z Anorg Allg Chem. 2010;636:2555–64.

    Article  CAS  Google Scholar 

  16. Tselinskii IV, Mel’nikova SF, Romanova TV. Synthesis and reactivity of carbohydroximoyl azides: I. Aliphatic and aromatic carbohydroximoyl azides and 5-substituted 1-hydroxytetrazoles based thereon. Russ J Org Chem. 2001;37:430–6.

    Article  CAS  Google Scholar 

  17. Fischer N, Klapoetke TM, Reymann M, Stierstorfer J. Nitrogen-rich salts of 1H,1′H-5,5′-bitetrazole-1,1′-diol: energetic materials with high thermal stability. Eur J Inorg Chem. 2013;2013:2167–80.

    Article  CAS  Google Scholar 

  18. Fischer N, Fischer D, Klapoetke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    Article  CAS  Google Scholar 

  19. Shang Y, Jin B, Liu QQ, Peng RF, Guo ZC, Zhang QC. Synthesis, thermal behavior, and energetic properties of diuronium 1H,1′H-5,5′-bistetrazole-1,1′-diolate salt. J Mol Struct. 2017;1133:519–25.

    Article  CAS  Google Scholar 

  20. Shang Y, Jin B, Peng RF, Guo ZC, Liu QQ, Zhao J, Zhang QC. Nitrogen-rich energetic salts of 1H,1′H-5,5′-bistetrazole-1,1′-diolate: synthesis, characterization, and thermal behaviors. RSC Adv. 2016;6:48590–8.

    Article  CAS  Google Scholar 

  21. Zhang ZB, Yin L, Yin X, Zhang JG. Preparation, crystal and properties of nitrogen-rich energetic salt of bis(semicarbazide)5,5′-bitetrazole-1,1′-diolate. Crystals. 2016;6:76075–83.

    CAS  Google Scholar 

  22. Fischer N, Izsák D, Klapoetke TM, Rappenglüeck S, Stierstorfer J. Nitrogen-rich 5,5′-bistetrazolates and their potential use in propellant systems: a comprehensive study. Chem Eur J. 2012;18:4051–62.

    Article  CAS  PubMed  Google Scholar 

  23. Huang HF, Zhou ZM, Liang LX, Song JH, Wang K, Cao D, Bian CM, Sun WW, Xue M. Nitrogen-rich energetic dianionic salts of 3,4-bis(1H-5-tetrazolyl)furoxan with excellent thermal stability. Z Anorg Allg Chem. 2012;638:392–400.

    Article  CAS  Google Scholar 

  24. Niu H, Chen SS, Jin SH, Li LJ, Jing BC, Jiang ZM, Ji JW, Shu QH. Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calorim. 2016;126:473–80.

    Article  CAS  Google Scholar 

  25. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  26. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  27. Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  28. Li ZM, Xie SH, Zhang JG, Feng JL, Wang K, Zhang TL. Two high nitrogen content energetic compounds: 3,6-diguanidino-1,2,4,5-tetrazine and its diperchlorate. J Chem Eng Data. 2012;57:729–36.

    Article  CAS  Google Scholar 

  29. Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J Chem Phys. 1968;48:23–35.

    Article  CAS  Google Scholar 

  30. Jenkins HDB, Tudela D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem. 2002;41:2364–7.

    Article  CAS  PubMed  Google Scholar 

  31. Sućeska M. Calculation of the detonation properties of C-H-N-O explosives. Propellants, Explos, Pyrotech. 1991;16:197–202.

    Article  Google Scholar 

  32. Verevkin SP, Zaitsau DH, Emel’yanenko VN, Paulechka YU, Blokhin AV, Bazyleva AB, Kabo GJ. Thermodynamics of ionic liquids precursors: 1-methylimidazole. J Phys Chem B. 2011;115:4404–11.

    Article  CAS  PubMed  Google Scholar 

  33. Tang YX, Gao HX, Parrish DA, Shreeve JM. 1,2,4-Triazole links and N-azo bridges yield energetic compounds. Chem Eur J. 2015;21:11401–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gao HX, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support received from the Science Challenge Project (Project No. TZ2018004), the National Natural Science Foundation of China (Project No. 51372211), the China Academy of Engineering Physics Research Institute (Project No. 18zh0079) and Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional (Project No. 14tdfk05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Jin or Rufang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Jin, B., Peng, R. et al. Preparation and characterization of nitrogen-rich bis-1-methylimidazole1H,1′H-5,5′-bistetrazole-1,1′-diolate energetic salt. J Therm Anal Calorim 135, 3005–3013 (2019). https://doi.org/10.1007/s10973-018-7481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7481-7

Keywords

Navigation