Skip to main content
Log in

Viscoelastic model of ethylene glycol with temperature-dependent thermophysical properties

Heat transfer enhancement with nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The MHD flow of ethylene glycol with four different nanoparticles has been modeled with the help of upper convected Maxwell model. Throughout the channel, the viscosity and thermal conductivity of the base fluid are assumed to be dependent on the temperature of the fluid. The effect of addition of Cu, Ag, Al\(_2\)O\(_3\) and TiO\(_2\) nanoparticles on the base fluid (ethylene glycol) is investigated for various volume fractions. The effect of variable properties, viscoelasticity, and wall motion on Ag–ethylene glycol nanofluid are studied through relevant non-dimensional parameters with shooting technique. The numerical results show that the variable viscosity and viscoelasticity have a considerable effect on the flow of the fluid, and viscous nanofluid case is in good agreement with earlier literature. It is observed that the temperatures and Nusselt numbers of metallic oxide nanofluids are greater than the metallic nanofluids in both expanding and squeezing regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

h :

Origin-to-wall distance (m), \(H\sqrt{(1 - \eta t)}\)

\(\eta\) :

Wall motion parameter \((\hbox {s}^{-1})\)

\(v_{\mathrm{w}}\) :

Velocity of the wall \((\hbox {m\,s}^{-1}\))

\(T_{{\mathrm{r}}}\) :

Reference temperature at the walls (\(^{\circ }\hbox {C}\) )

\(T_0\) :

Temperature (\(^{\circ }\hbox {C}\)) at \(y=0\)

\(T_{\mathrm{S}}\) :

Temperature ratio \(T_0\)/\(T_{{\mathrm{r}}}\)

\(\rho\) :

Density of the fluid (\(\hbox {Kg\, m}^{-3}\))

\(\beta\) :

Relaxation parameter (\(\hbox {s}^{-1}\))

P :

Pressure (\(\hbox {Kg\, m \,s}^{-2}\))

\(\mu\) :

Viscosity of the fluid (\(\hbox {Kg\, m}^{-1}\, \hbox {s}^{-1}\))

\(A_1\) :

Variable viscosity parameter

\(\nu\) :

Kinematic viscosity (\(\hbox {m\, s}^{-1}\))

\(\sigma\) :

Electrical conductivity of the fluid (\(\hbox {S\, m}^{-1}\))

\(B_0\) :

Magnetic field strength (\(\hbox {Wb\, m}^{2}\))

c :

Specific heat constant; (\({\rm J\,kg}^{-1}\,{\rm K}^{-1}\))

k :

Thermal conductivity (\(\hbox {W\, m}^{-1}\, \hbox {K}^{-1}\))

\(A_2\) :

Variable thermal conductivity parameter

\(\chi\) :

Volume fraction parameter

\(\delta\) :

Axial length variable, \(\frac{H}{x}\)

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab, IL (United States); 1995.

  2. Choi SUS. Nanofluid technology: current status and future research. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States); 1998.

  3. Das SK, Stephen UA. Review of heat transfer in nanofluids. Adv Heat Transf. 2009;41:81–197.

    Article  CAS  Google Scholar 

  4. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  5. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  6. Kabeel A, Omara Z, Essa F. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Convers Manag. 2014;78:493–8.

    Article  CAS  Google Scholar 

  7. Sandeep N, Kumar M. Heat and mass transfer in nanofluid flow over an inclined stretching sheet with volume fraction of dust and nanoparticles. J Appl Fluid Mech. 2016;9(5):2205–15.

    Google Scholar 

  8. El-Maghlany WM, Elazm MMA, Shehata AI, Teamah MA. A novel technique for heat transfer enhancement from a horizontal heated pipe by using nanofluid restrained flow. J Taiwan Inst Chem Eng. 2016;68:338–50.

    Article  CAS  Google Scholar 

  9. Raisi A, Aminossadati S, Ghasemi B. An innovative nanofluid-based cooling using separated natural and forced convection in low reynolds flows. J Taiwan Inst Chem Eng. 2016;62:259–66.

    Article  CAS  Google Scholar 

  10. Zhang Y, Li L, Ma H, Yang M. Effect of brownian and thermophoretic diffusions of nanoparticles on nonequilibrium heat conduction in a nanofluid layer with periodic heat flux. Numer Heat Transf Part A Appl. 2009;56(4):325–41.

    Article  CAS  Google Scholar 

  11. Anbuchezhian N, Srinivasan K, Chandrasekaran K, Kandasamy R. Thermophoresis and brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl Math Mech. 2012;33(6):765–80.

    Article  Google Scholar 

  12. Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.

    Article  Google Scholar 

  13. Singh K, Rawat SK, Kumar M. Heat and mass transfer on squeezing unsteady mhd nanofluid flow between parallel plates with slip velocity effect. J Nanosci. Article ID 9708562 2016. https://doi.org/10.1155/2016/9708562

  14. Qureshi MZA, Rubbab Q, Irshad S, Ahmad S, Aqeel M. Heat and mass transfer analysis of mhd nanofluid flow with radiative heat effects in the presence of spherical au-metallic nanoparticles. Nanoscale Res Lett. 2016;11(1):472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aman S, Khan I, Ismail Z, Salleh MZ. Impacts of gold nanoparticles on MHD mixed convection poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput Appl. 2016;. https://doi.org/10.1007/s00521-016-2688-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sheikholeslami M, Rashidi MM. Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering brownian motion and thermophoresis effects. J Braz Soc Mech Sci Eng. 2016;38(4):1171–84.

    Article  CAS  Google Scholar 

  17. Pourmehran O, Rahimi-Gorji M, Ganji D. Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field. J Taiwan Inst Chem Eng. 2016;65:162–71.

    Article  CAS  Google Scholar 

  18. Abu-Nada E. Effects of variable viscosity and thermal conductivity of \(Al_2O_3\)-water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow. 2009;30(4):679–90.

    Article  CAS  Google Scholar 

  19. Tlili I, Hamadneh NN, Khan WA, Atawneh S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects. J Therm Anal Calorim. 2018;. https://doi.org/10.1007/s10973-018-7066-5.

    Article  Google Scholar 

  20. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu-water nanofluid. J Therm Anal Calorim. 2018;132:1291–306.

    Article  CAS  Google Scholar 

  21. Bourantas G, Loukopoulos VC. Modeling the natural convective flow of micropolar nanofluids. Int J Heat Mass Transf. 2014;68:35–41.

    Article  CAS  Google Scholar 

  22. Hussanan A, Salleh MZ, Khan I, Shafie S. Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil. J Mol Liq. 2017;229:482–8.

    Article  CAS  Google Scholar 

  23. Besthapu P, Haq RU, Bandari S, Al-Mdallal QM. Thermal radiation and slip effects on mhd stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput Appl. 2017;. https://doi.org/10.1007/s00521-017-2992-x.

    Article  Google Scholar 

  24. Rehman A, Nadeem S, Malik M. Stagnation flow of couple stress nanofluid over an exponentially stretching sheet through a porous medium. J Power Technol. 2013;93(2):122.

    CAS  Google Scholar 

  25. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM. Rheological non-newtonian behaviour of ethylene glycol-based \(Fe_2 O_3\) nanofluids. Nanoscale Res Lett. 2011;6(1):560.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boltzmann L. Zur theorie der elastischen nachwirkung. Annalen der Physik. 1878;241(11):430–2.

    Article  Google Scholar 

  27. Volterra V. Sulle equazioni integrodifferenziali della teoria deu’elasticita. Atti Reale Accad. 1909;18(2):295.

    Google Scholar 

  28. Oldroyd J. On the formulation of rheological equations of state. Proc R Soc Lond A Math Phys Proc R Soc Lond A Math Phys Eng Sci R Soc. 1950;200:523–41.

    Article  CAS  Google Scholar 

  29. Waqas M, Khan MI, Hayat T, Alsaedi A. Numerical simulation for magneto carreau nanofluid model with thermal radiation: a revised model. Comput Methods Appl Mech Eng. 2017;324:640–53.

    Article  Google Scholar 

  30. Hayat T, Mumtaz M, Shafiq A, Alsaedi A. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Appl Math Mech. 2017;8(2):271–88.

    Article  Google Scholar 

  31. Farooq M, Khan MI, Waqas M, Hayat T, Alsaedi A, Khan MI. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq. 2016;221:1097–103.

    Article  CAS  Google Scholar 

  32. Golafshan B, Rahimi AB. Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2018;. https://doi.org/10.1007/s10973-018-7075-4.

    Article  Google Scholar 

  33. Reddy GK, Yarrakula K, Raju CSK, Rahbari A. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim. 2018;. https://doi.org/10.1007/s10973-018-7115-0.

    Article  Google Scholar 

  34. Shit G, Haldar R, Ghosh S. Convective heat transfer and MHD viscoelastic nanofluid flow induced by a stretching sheet. Int J Appl Comput Math. 2016;2(4):593–608.

    Article  Google Scholar 

  35. Gorla RSR, Gireesha BJ. Convective heat transfer in three-dimensional boundary-layer flow of viscoelastic nanofluid. J Thermophys Heat Transf. 2015;29(2):334–41.

    Article  CAS  Google Scholar 

  36. Middleman S. Fundamentals of polymer processing. New York: McGraw-Hill College; 1977.

    Google Scholar 

  37. Hayat T, Muhammad T, Shehzad S, Alsaedi A. Three-dimensional boundary layer flow of maxwell nanofluid: mathematical model. Appl Math Mech. 2015;36(6):747–62.

    Article  Google Scholar 

  38. Umavathi J, Yadav D, Mohite MB. Linear and nonlinear stability analyses of double-diffusive convection in a porous medium layer saturated in a Maxwell nanofluid with variable viscosity and conductivity. Elixir Mech Eng. 2015;79:30407–26.

    Google Scholar 

  39. Leider PJ, Bird RB. Squeezing flow between parallel disks. i. Theoretical analysis. Ind Eng Chem Fundam. 1974;13(4):336–41.

    Article  CAS  Google Scholar 

  40. Kazankov YV, Pervushin V. Nonisothermal flow induced by the squeezing of a non-newtonian fluid film between two parallel plates. J Appl Mech Tech Phys. 1980;21(2):215–9.

    Article  Google Scholar 

  41. Shirodkar P, Middleman S. Lubrication flows in viscoelastic liquids. i. Squeezing flow between approaching parallel rigid planes. J Rheol. 1982;26(1):1–17.

    Article  CAS  Google Scholar 

  42. Shirodkar P, Bravo A, Middleman S. Lubrication flows in viscoelastic liquids: 2. Effect of slip on squeezing flow between approaching parallel rigid planes. Chem Eng Commun. 1982;14(3–6):151–75.

    Article  CAS  Google Scholar 

  43. Phan-Thien N, Walsh W. Squeeze-film flow of an Oldroyd-B fluid: similarity solution and limiting Weissenberg number. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1984;35(6):747–59.

    Article  Google Scholar 

  44. Phan-Thien N. Squeezing flow of a viscoelastic solid. J Non Newton Fluid Mech. 2000;95(2–3):343–62.

    Article  CAS  Google Scholar 

  45. Debbaut B. Non-isothermal and viscoelastic effects in the squeeze flow between infinite plates. J Non Newt Fluid Mech. 2001;98(1):15–31.

    Article  CAS  Google Scholar 

  46. Hayat T, Qayyum A, Alsaedi A. MHD unsteady squeezing flow over a porous stretching plate. Eur Phys J Plus. 2013;128(12):157.

    Article  Google Scholar 

  47. Stefan MJ. Versuch Uber die scheinbare adhesion. Akademie der Wissenschften in Wien, Mathematik-Naturwissen. 1874;69:713.

    Google Scholar 

  48. Langlois W. Isothermal squeeze films. Q Appl Math. 1962;20(2):131–50.

    Article  Google Scholar 

  49. Ran X, Zhu Q, Li Y. An explicit series solution of the squeezing flow between two infinite plates by means of the homotopy analysis method. Commun Nonlinear Sci Numer Simul. 2009;14(1):119–32.

    Article  Google Scholar 

  50. Duwairi H, Tashtoush B, Damseh RA. On heat transfer effects of a viscous fluid squeezed and extruded between two parallel plates. Heat Mass Transf. 2004;41(2):112–7.

    Google Scholar 

  51. Sheikholeslami M, Ganji D, Ashorynejad H. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol. 2013;239:259–65.

    Article  CAS  Google Scholar 

  52. Sheikholeslami M, Ganji D. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77.

    Article  CAS  Google Scholar 

  53. Sheikholeslami M, Rokni HB. Simulation of nanouid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  54. Sheikholeslami M, Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq. 2018;254:446–62.

    Article  CAS  Google Scholar 

  55. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018;30(1):012003.

    Article  CAS  Google Scholar 

  56. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M. Numerical investigation for CuO–H\(_2\)O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  58. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  59. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  60. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J Mol Liq. 2017;234:364–74.

    Article  CAS  Google Scholar 

  61. Sheikholeslami M. CuO-water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017;132:55. https://doi.org/10.1140/epjp/i2017-11330-3.

    Article  CAS  Google Scholar 

  62. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe\(_3\)O\(_4\)-H\(_2\)O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  63. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  64. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  65. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  66. Sheikholeslami M, Shamlooei M, Moradi R. Fe\(_3\)O\(_4\)-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq. 2018;249:429–37.

    Article  CAS  Google Scholar 

  67. Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J Mol Liq. 2017;231:555–65.

    Article  CAS  Google Scholar 

  68. Freidoonimehr N, Rostami B, Rashidi MM, Momoniat E. Analytical modelling of three-dimensional squeezing nanofluid flow in a rotating channel on a lower stretching porous wall. Math Probl Eng. 2014. Article ID 692728.

  69. Hatami M, Sahebi S, Majidian A, Sheikholeslami M, Jing D, Domairry G. Numerical analysis of nanofluid flow conveying nanoparticles through expanding and contracting gaps between permeable walls. J Mol Liq. 2015;212:785–91.

    Article  CAS  Google Scholar 

  70. Domairry G, Hatami M. Squeezing Cu-water nanofluid flow analysis between parallel plates by DTM-Padé Method. J Mol Liq. 2014;193:37–44.

    Article  CAS  Google Scholar 

  71. Sheikholeslami M, Ganji D. Effect of adding nanoparticle on squeezing flow and heat transfer improvement using kkl model. Int J Numer Methods Heat Fluid Flow. 2017;27(7):1535–53.

    Article  Google Scholar 

  72. Mittal R, Pandit S. Numerical simulation of unsteady squeezing nanofluid and heat flow between two parallel plates using wavelets. Int J Therm Sci. 2017;118:410–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Defence Institution of Advanced Technology (Deemed University) for providing necessary monetary and infrastructural resources required for the research. One of the authors (PKK) is thankful to the University grants commission for funding his research [F.2-18/2012(SA-I)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambhatla, P.K., Ojjela, O. & Das, S.K. Viscoelastic model of ethylene glycol with temperature-dependent thermophysical properties. J Therm Anal Calorim 135, 1257–1268 (2019). https://doi.org/10.1007/s10973-018-7476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7476-4

Keywords

Navigation