Advertisement

Conjugate heat transfer of Al2O3–water nanofluid in a square cavity heated by a triangular thick wall using Buongiorno’s two-phase model

  • A. I. Alsabery
  • T. Armaghani
  • A. J. Chamkha
  • I. Hashim
Article

Abstract

The present study investigates the conjugate heat transfer in a square cavity heated by a triangular solid and saturated with \(\text{Al}_2\text{O}_3\)–water nanofluid. Two-phase Buongiorno’s model is used for modeling the nanofluid heat transfer. The finite element method is used for numerical solution of the dimensionless governing equations subject to the boundary conditions. Comparisons of the proposed method with previously published experimental and numerical works show a good agreement. The effects of some parameters such as the Rayleigh number, thermal conductivity ratio, dimensionless triangular wall thickness and nanofluid volume fraction on heat transfer and nanoparticle distributions are completely studied and discussed. The results show clockwise rotations for streamlines and nanoparticle migration. Also the Nusselt number increases with the nanofluid volume fraction. A continuous reduction is seen for the mean Nusselt number by increasing the dimensionless triangular wall thickness for all the considered values of the Rayleigh number.

Keywords

Nanofluid Heat transfer Brownian motion Thermophoresis effect Nanoparticle distribution Triangular solid 

List of symbols

\(C_{\mathrm{p}}\)

Specific heat capacity (J kg\(^{1}\) K\(^{1}\))

d

Width and height of triangular solid wall (m)

\(d_{\mathrm{f}}\)

Diameter of the base fluid molecule (nm)

\(d_{\mathrm{p}}\)

Diameter of the nanoparticle (nm)

D

Dimensionless triangular wall thickness, \(D=d/L\)

\(D_{\mathrm{B}}\)

Brownian diffusion coefficient (kg m\(^{-1}\) s\(^{-1}\))

\(D_{\mathrm{B}0}\)

Reference Brownian diffusion coefficient (kg m\(^{-1}\) s\(^{-1}\))

\(D_{\mathrm{T}}\)

Thermophoretic diffusivity coefficient (kg m\(^{-1}\) s\(^{-1}\))

\(D_{\mathrm{T}0}\)

Reference thermophoretic diffusion coefficient (kg m\(^{-1}\) s\(^{-1}\))

g

Gravitational acceleration (ms\(^{-2}\))

k

Thermal conductivity (Wm\(^{-1}\) K\(^{-1}\))

\(K_{\mathrm{r}}\)

Triangular wall to nanofluid thermal conductivity ratio, \(K_{\mathrm{r}}=k_{\mathrm{w}}/k_{\mathrm{nf}}\)

L

Width and height of enclosure (m)

Le

Lewis number

\(N_{\mathrm{BT}}\)

Ratio of Brownian to thermophoretic diffusivity

\(\overline{Nu}\)

Average Nusselt number

Pr

Prandtl number

Ra

Rayleigh number

\(Re_{\mathrm{B}}\)

Brownian motion Reynolds number

T

Temperature (K)

\(T_0\)

Reference temperature (310 K)

\(T_{\mathrm{fr}}\)

Freezing point of the base fluid (273.15 K)

\(\mathbf v\), \(\mathbf V\)

Velocity and dimensionless velocity vector (ms\(^{-1}\))

\(u_{\mathrm{B}}\)

Brownian velocity of the nanoparticle (ms\(^{-1}\))

x, y and X, Y

Space coordinates and dimensionless space coordinates

Greek symbols

\(\alpha\)

Thermal diffusivity (m\(^2\) s\(^{-1}\))

\(\beta\)

Thermal expansion coefficient (K\(^{-1}\))

\(\theta\)

Dimensionless temperature

\(\mu\)

Dynamic viscosity (kg m\(^-1\) s\(^-1\))

\(\nu\)

Kinematic viscosity (m\(^2\) s\(^{-1}\))

\(\rho\)

Density (kg m\(^{-3}\))

\(\varphi\)

Solid volume fraction

\(\varphi ^*\)

Normalized solid volume fraction

\(\phi\)

Average solid volume fraction

Subscript

c

Cold

f

Base fluid

h

Hot

nf

Nanofluid

p

Solid nanoparticles

w

Solid wall

Notes

Acknowledgements

The work was supported by the Universiti Kebangsaan Malaysia (UKM) research Grant DIP-2017-010. We thank the respected reviewers for their constructive comments which clearly enhanced the quality of the manuscript.

Supplementary material

10973_2018_7473_MOESM1_ESM.pdf (102 kb)
Supplementary material 1 (pdf 102 KB)

References

  1. 1.
    Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615.CrossRefGoogle Scholar
  2. 2.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99.Google Scholar
  3. 3.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027.CrossRefGoogle Scholar
  4. 4.
    Ilyas SU, Pendyala R, Narahari M. An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. Appl Therm Eng. 2017;127:765.CrossRefGoogle Scholar
  5. 5.
    Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772.CrossRefGoogle Scholar
  6. 6.
    Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1.CrossRefGoogle Scholar
  7. 7.
    Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135.CrossRefGoogle Scholar
  8. 8.
    Ismael MA, Armaghani T, Chamkha AJ. Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J Taiwan Inst Chem Eng. 2016;59:138.CrossRefGoogle Scholar
  9. 9.
    Chamkha A, Ismael M, Kasaeipoor A, Armaghani T. Entropy generation and natural convection of CuO–water nanofluid in C-shaped cavity under magnetic field. Entropy. 2016;18(2):50.CrossRefGoogle Scholar
  10. 10.
    Ghalambaz M, Sabour M, Pop I. Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng Sci Technol. 2016;19(3):1244.Google Scholar
  11. 11.
    Jbeili M, Wang G, Zhang J. Evaluation of thermal and power performances of nanofluid flows through square in-line cylinder arrays. J Therm Anal Calorim. 2017;129(3):1923.CrossRefGoogle Scholar
  12. 12.
    Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technol. 2017;308:214.CrossRefGoogle Scholar
  13. 13.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;.  https://doi.org/10.1007/s10973-017-6907-y.CrossRefGoogle Scholar
  14. 14.
    Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211.CrossRefGoogle Scholar
  15. 15.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240.CrossRefGoogle Scholar
  16. 16.
    Kuznetsov A, Nield D. Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp Porous Media. 2010;83(2):425.CrossRefGoogle Scholar
  17. 17.
    Heyhat M, Kowsary F. Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Transf. 2010;132(6):062401.CrossRefGoogle Scholar
  18. 18.
    Maghrebi MJ, Nazari M, Armaghani T. Forced convection heat transfer of nanofluids in a porous channel. Transp Porous Media. 2012;93(3):401.CrossRefGoogle Scholar
  19. 19.
    Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha AJ. Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer Heat Transf Part A Appl. 2016;70(4):432.CrossRefGoogle Scholar
  20. 20.
    Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304.CrossRefGoogle Scholar
  21. 21.
    Sheremet MA, Pop I. Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. J Heat Transf. 2015;137(7):072601.CrossRefGoogle Scholar
  22. 22.
    Sheremet MA, Pop I. Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid: Buongiorno’s mathematical model. Int J Numer Methods Heat Fluid Flow. 2015;25(5):1138.CrossRefGoogle Scholar
  23. 23.
    Sheremet MA, Pop I. Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. Transp Porous Media. 2014;105(2):411.CrossRefGoogle Scholar
  24. 24.
    Sheremet MA, Revnic C, Pop I. Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect. Appl Math Comput. 2017;299:1.Google Scholar
  25. 25.
    Motlagh SY, Soltanipour H. Natural convection of Al2O3–water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310.CrossRefGoogle Scholar
  26. 26.
    Sheremet MA, Pop I. Marangoni natural convection in a cubical cavity filled with a nanofluid. J Therm Anal Calorim. 2018;.  https://doi.org/10.1007/s10973-018-7069-2.CrossRefGoogle Scholar
  27. 27.
    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789.CrossRefGoogle Scholar
  28. 28.
    Reddy JN. An introduction to the finite element method, vol. 2. New York: McGraw-Hill; 1993.Google Scholar
  29. 29.
    Ho C, Liu W, Chang Y, Lin C. Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345.CrossRefGoogle Scholar
  30. 30.
    Sheikhzadeh GA, Dastmalchi M, Khorasanizadeh H. Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure. Int J Therm Sci. 2013;66:51.CrossRefGoogle Scholar
  31. 31.
    Bergman TL, Incropera FP. Introduction to heat transfer. 6th ed. New York: Wiley; 2011.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Refrigeration & Air-conditioning Technical Engineering Department, College of Technical EngineeringThe Islamic UniversityNajafIraq
  2. 2.School of Mathematical Sciences, Faculty of Science & TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Engineering, Mahdishahr BranchIslamic Azad UniversityMahdishahrIran
  4. 4.Department of Mechanical Engineering, Prince Sultan Endowment for Energy and the EnvironmentPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  5. 5.RAK Research and Innovation CenterAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations