Skip to main content
Log in

Experimental investigation of mixed convection heat transfer of nanofluids in a circular microchannel with different inclination angles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the characteristics of mixed convection heat transfer of nanofluids in circular microchannels with 500 μm diameter were investigated experimentally. In the study, water and water-based SiO2 nanofluids were used as the working fluid, and volumetric particle ratios of the nanofluids were selected as 0.2 and 0.4%. The thermal conductivity and viscosity characterizations of all fluids were performed in the temperature range of 20–60 °C, and the characteristics related to the temperature obtained from the measurements were used in calculations. The effect of the microchannel inclination angle and particle volumetric ratio on the mixed convection heat transfer characteristics was investigated. Upon examining the results, it was revealed that the range of 13–35% of the total heat transfer was generated by the natural convection effects. Increasing the inclination angle of the test section provided an enhancement between 4 and 13% in the total heat transfer. Furthermore, the increase in the volumetric particle ratio increased both forced convection heat transfer and the natural convection heat transfer components. Adding nanosized SiO2 particles into the water caused the total heat transfer to increase from 12 to 14% for 0.2 vol% and from 29 to 32% for 0.4 vol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Heat transfer surface area (m2)

C p :

Specific heat at constant pressure (J kg−1 K−1)

D :

Diameter (m)

D T :

Thermophoretic diffusion coefficient (m2 s−1)

D B :

Brownian diffusion coefficient (m2 s−1)

Gr :

Grashof number

Gz :

Graetz number

g :

Gravitational acceleration (m s−2)

h :

Convection heat transfer coefficient (W m−2 K−1)

I :

Current (A)

k :

Thermal conductivity (W m−1 K−1)

k B :

Boltzmann constant (J K−1)

L :

Length of tube (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

N T :

Thermophoresis parameter

Nu :

Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

Re :

Reynolds number

\(\dot{Q}\) :

Heat rate (W)

T :

Temperature (°C)

U :

Average velocity (m s−1)

V :

Voltage (V)

ρ :

Density (kg m−3)

µ :

Dynamic viscosity (kg ms−1)

β :

Thermal expansion coefficient (1 K−1)

Φ :

Natural convection effect

Ω :

A form of Nusselt number

v :

Kinematic viscosity (m2 s−1)

α :

Thermal diffusivity (m2 s−1)

φ :

Nanoparticle volumetric fraction

θ :

Microchannel inclination angle

avg:

Average

b:

Bulk

bf:

Basefluid

i:

İnlet

nf:

Nanofluid

np:

Nanoparticle

o:

Outlet

s:

Surface

w:

Wall

References

  1. Shen S, Xu JL, Zhou JJ, Chen Y. Flow and heat transfer in microchannels with rough wall surface. Energy Convers Manag. 2006;47:1311–25.

    Article  CAS  Google Scholar 

  2. Agarwal A, Bandhauer TM, Garimella S. Measurement and modeling of condensation heat transfer in non-circular microchannels. Int J Refrig. 2010;33:1169–79.

    Article  CAS  Google Scholar 

  3. Chiu H, Jang J, Yeh H, Wu M. The heat transfer characteristics of liquid cooling heat sink containing microchannels. Int J Heat Mass Transf. 2011;54:34–42.

    Article  Google Scholar 

  4. Adham AM, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review. Renew Sustain Energy Rev. 2013;21:614–22.

    Article  Google Scholar 

  5. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, USA ASME FED. 1995;231:99–105.

  6. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  7. Shawn AP, David GC, Paul VB. Thermal conductivity of nanoparticle suspensions. J Appl Phys. 2006;99:1–6.

    Google Scholar 

  8. Tavman I, Turgut A, Chirtoc M, Hadjov K, Fudym O, Tavman S. Experimental study on thermal conductivity and viscosity of water-based nanofluids. Heat Transf Res. 2010;41:339–51.

    Article  Google Scholar 

  9. Angayarkanni SA, Philip J. Review on thermal properties of nanofluids: recent developments. Adv Colloid Interface Sci. 2015;225:146–76.

    Article  CAS  PubMed  Google Scholar 

  10. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  11. Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  CAS  Google Scholar 

  12. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Partıcuology. 2009;7:141–50.

    Article  CAS  Google Scholar 

  13. Li J, Kleinstreuer C. Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow. 2008;29:1221–32.

    Article  CAS  Google Scholar 

  14. Sohel M, Saidur R, Sabri MFM, Kamalisarvestani M, Elias M, Ijam A. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular microchannel. Int Commun Heat Mass Transf. 2013;42:75–81.

    Article  CAS  Google Scholar 

  15. Mohammed HA, Bhaskaran G, Shuaib NH. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Energy Rev. 2011;15:1502–12.

    Article  CAS  Google Scholar 

  16. Salman BH, Mohammed HA, Munisamy KM, Kherbett AS. Characteristics of heat transfer and fluid flow in microtube and microchannels using conventional fluids and nanofluids: a review. Renew Sustain Energy Rev. 2013;28:848–80.

    Article  CAS  Google Scholar 

  17. Malvandi A, Ganji DD. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannels. Powder Technol. 2014;263:37–44.

    Article  CAS  Google Scholar 

  18. Hedayati F, Domairry G. Effects of nanoparticle migration and asymmetric heating on mixed convection of TiO2–H2O nanofluid inside a vertical microchannels. Powder Technol. 2015;272:250–9.

    Article  CAS  Google Scholar 

  19. Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG. Experiments on mixed convection heat transfer and performance evaluation of MWCNT–Oil nanofluid flow in horizontal and vertical microfin tubes. Exp Therm Fluid Sci. 2015;61:241–8.

    Article  CAS  Google Scholar 

  20. Avramenko AA, Tyrinov AI, Shevchuk IV, Dmitrenko NP, Kravchuk AV, Shevchuk VI. Mixed convection in a vertical circular microchannels. Int J Therm Sci. 2017;121:1–12.

    Article  Google Scholar 

  21. Kao MJ, Hsu FC, Peng DX. Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv Mater Sci Eng. 2014;1:1–8.

    Article  CAS  Google Scholar 

  22. Hammerschmidt U, Meier V. New transient hot-bridge sensor to measure thermal conductivity thermal diffusivity and volumetric specific heat. Int J Thermophys. 2006;27(3):840–65.

    Article  CAS  Google Scholar 

  23. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  24. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent therma conductivity and viscosity of TiO2 water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  25. Sharma KV, Sarma PK, Azmi WH, Mamat R, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microscale Nanoscale Therm Fluid Transp Phenom. 2012;3:1–25.

    CAS  Google Scholar 

  26. Azmi WH, Sharma KV, Mamat R, Najafi G, Mohamad MS. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—a review. Renew Sustain Energy Rev. 2016;53:1046–58.

    Article  Google Scholar 

  27. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  28. Jung JY, Yoo YJ. Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Transf. 2009;52:525–8.

    Article  CAS  Google Scholar 

  29. Ohshima H, Furusawa K. Electrical Phenomena at Interfaces: fundamentals. Measurements and applications. New York: Marcel Dekker Inc.; 1998.

    Google Scholar 

  30. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2005;128(3):240–50.

    Article  Google Scholar 

  31. Buongiorno J. A Non-homogeneous equilibrium model for convective transport in flowing nanofluids. In: 2005 ASMEE summer heat transfer conference. Proceedings of HT2005.

  32. Lister DH. Corrosion products in power generating systems. 1980; AECL-6877.

  33. Müller-Steinhagen H. Cooling-water fouling in heat exchangers. Adv Heat Transf. 1999;33:415–96.

    Article  Google Scholar 

  34. Nield DA, Kuznetsov AV. The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2011;54:374–8.

    Article  CAS  Google Scholar 

  35. Li W, Feng ZZ. Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, part II: correlations. Int J Heat Mass Transf. 2013;65:919–27.

    Article  CAS  Google Scholar 

  36. Feng ZZ, Li W. Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, part I: experimental study. Int J Heat Mass Transf. 2013;65:919–27.

    Article  CAS  Google Scholar 

  37. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75(1):3–8.

    Google Scholar 

  38. Durgaprasad P, Varma SVK, Hoque MM, Raju CSK. Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles. Neural Comput Appl. 2018. https://doi.org/10.1007/s00521-018-3451-z.

    Article  Google Scholar 

  39. Anbuchezhian N, Srinivasan K, Chandrasekaran K, Kandasamy R. Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl Math Mech. 2012;33(6):765–79.

    Article  Google Scholar 

  40. Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:1–3.

    Google Scholar 

  41. Shannon RL, Depew CA. Forced laminar flow convection in a horizontal tube with variable viscosity and free-convection effects. J Heat Transf. 1969;91:251–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Erzurum Technical University, Research Project Foundation (Project No. BAP-2015/3). The Authors wish to thank Erzurum Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyuphan Manay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manay, E., Mandev, E. Experimental investigation of mixed convection heat transfer of nanofluids in a circular microchannel with different inclination angles. J Therm Anal Calorim 135, 887–900 (2019). https://doi.org/10.1007/s10973-018-7463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7463-9

Keywords

Navigation