Skip to main content
Log in

Hindered electrophoresis of nanoparticles in narrow pores

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydrodynamic force (drag) on spherical and irregularly shaped particles significantly increases when the particles move close to solid and permeable boundaries. The overall effect of the increased hydrodynamic drag is to hinder the particle movement in the vicinity of boundaries and this includes the Brownian movement and electrophoresis. The Monte Carlo simulation method is used to model the Brownian movement, the resulting diffusion, and the electrophoresis of spherical particles in narrow, cylindrical pores, filled with Newtonian fluids. It is observed that the effect of the pore walls is a significant reduction of the space-averaged electrophoretic velocity of the particles, which implies reduced particle flux through the pores. The hindered electrophoresis is primarily a geometric phenomenon, caused by the increased drag and depends on the size of the particles and the pore-to-particle diameter ratio. The temperature of the fluid slightly affects the hindered electrophoresis through its effect on the viscosity, which is a determinant of the Brownian force, the diffusivity and the electrophoretic velocity. The hindered electrophoresis is almost independent of the other fluid and particle properties, such as density. Based on the simulation results a non-linear correlation for the flux of particles is derived, valid in the ranges 5 < R/α < 120, 5 nm < α < 100 nm and 273 K < T < 355 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

D :

Particle diffusivity

E :

Electric field intensity

F :

Force

h :

Particle distance from the wall

k B :

Boltzmann constant

K :

Drag enhancement parameter

m:

Mass

NBE :

Dimensionless force

q:

Surface charge of the particle

r :

Radial coordinate

R :

Radius of the pore

\(\vec{R}\) :

Random number

Re :

Reynolds number

t :

Time

T :

Temperature

u :

Fluid velocity

v :

Particle velocity

V el :

Thermophoretic velocity

V el∞ :

Thermophoretic velocity in an infinite medium

z :

Axial coordinate

α :

Particle radius

ε :

Electric permittivity

ζ :

Zeta-potential

μ :

Dynamic viscosity

ν :

Dynamic viscosity

ρ :

Density

τ :

Characteristic time

av:

Average

el:

Electrophoretic

f:

Fluid

p:

Particle

References

  1. Westermeier R. Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. 4th ed. London: Wiley; 2005.

    Google Scholar 

  2. Jubery KZ, Prabhu AS, Kim MZ, Dutta P. Modeling and simulation of nanoparticle separation through a solid-state nanopore. Electrophoresis. 2012;33:325–33.

    Article  CAS  PubMed  Google Scholar 

  3. Michaelides EE. Nanofluidics—thermodynamic and transport properties. New York: Springer; 2014.

    Google Scholar 

  4. Mebert AM, Tuttolomondo MV, Alvarez-Echazu MI, Foglia ML, Alvarez GS, Vescina MC, Santo-Orihuela PL, Desimone MF. Review—nanoparticles and capillary electrophoresis: a marriage with environmental impact. Electrophoresis. 2016;37:2196–207.

    Article  CAS  PubMed  Google Scholar 

  5. Michaelides EE. Hydrodynamic force and heat/mass transfer from particles, bubbles and drops—the Freeman scholar lecture. J Fluids Eng. 2003;125:209–38.

    Article  Google Scholar 

  6. Deen WM. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987;33:1409–25.

    Article  CAS  Google Scholar 

  7. Bird RB. five decades of transport phenomena. AIChE J. 2004;50:273–87.

    Article  CAS  Google Scholar 

  8. Michaelides EE. Nanoparticle diffusivity in narrow cylindrical pores. Int J Heat Mass Transf. 2017;114:607–12.

    Article  Google Scholar 

  9. Han R, Wang G, Qi S, Ma C, Yeung SE. Electrophoretic migration and axial diffusion of individual nanoparticles in cylindrical nanopores. J Phys Chem C. 2012;116:18460–8.

    Article  CAS  Google Scholar 

  10. Goyal G, Freedman KJ, Kim MJ. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores. Anal Chem. 2013;85:8180–7.

    Article  CAS  PubMed  Google Scholar 

  11. Detcheverry F, Bocquet L. Thermal fluctuations in nanofluidic transport. Phys Rev Lett. 2012;109:024501.

    Article  CAS  PubMed  Google Scholar 

  12. Chiavazzo E, Fasano M, Asinari P, Decuzzi P. Scaling behaviour for the water transport in nanoconfined geometries. Nat Commun. 2014;5:3565. https://doi.org/10.1038/ncomms4565.

    Article  CAS  PubMed Central  Google Scholar 

  13. Faxen H. Der Widerstand gegen die Bewegung einer starren Kugel in einer zum den Flussigkeit, die zwischen zwei parallelen Ebenen Winden eingeschlossen ist. Ann Phys. 1922;68:89–119.

    Article  Google Scholar 

  14. Happel J, Brenner H. Low Reynolds number hydrodynamics. reprint. Dordecht: Martinus Nijhoff; 1986.

  15. Pasol M, Martin L, Ekiel-Jezewska ML, Wajnryb E, Blawzdziewicz J, Feuillebois F. Motion of a sphere parallel to plane walls in Poiseuille flow. Applications to field-flow fractionation and hydrodynamic chromatography. Chem Eng Sci. 2011;66:4078–89.

    Article  CAS  Google Scholar 

  16. Michaelides EE. Particles, bubbles and drops—their motion, heat and mass transfer. New Jersey: World Scientific Publishers; 2006.

    Book  Google Scholar 

  17. Michaelides EE. Wall effects on the Brownian movement, thermophoresis, and deposition of nanoparticles in liquids. J Fluids Eng. 2016;138(5):051303.

    Article  CAS  Google Scholar 

  18. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys Leipzick. 1905;17:549–60.

    Article  CAS  Google Scholar 

  19. Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol. 1992;16:209–26.

    Article  CAS  Google Scholar 

  20. Öttinger HC. Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Heidelberg: Springer; 1996.

    Book  Google Scholar 

  21. Berg JC. An introduction to interfaces and colloids—the bridge to nano-science. New Jersey: World Scientific; 2010.

    Google Scholar 

  22. Russel WR, Saville DA, Schowalter WR. Colloidal dispersions. Cambridge: Cambridge University Press; 1989.

    Book  Google Scholar 

  23. Ermak DL, McCammon JA. Brownian dynamics with hydrodynamic interaction. J Chem Phys. 1978;69:1352–60.

    Article  CAS  Google Scholar 

  24. Grassia PS, Hinch EJ, Nitche LC. Computer simulations of Brownian motion of complex systems. J Fluid Mech. 1995;282:373–403.

    Article  CAS  Google Scholar 

  25. Gerardi C, Cory D, Buongiorno J, Hu LW, McKrell T. Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett. 2009;95:253104.

    Article  CAS  Google Scholar 

  26. Michaelides EE. Brownian movement and thermophoresis of nanoparticles in liquids. Int J Heat Mass Transf. 2015;81:179–87.

    Article  CAS  Google Scholar 

  27. Holman JP. Experimental methods for engineers. 7th ed. New York: McGraw-Hill Book Co.; 2001.

    Google Scholar 

Download references

Acknowledgements

This research was partly supported by the W. A. “Tex” Chair of Engineering at Texas Christian University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios E. Michaelides.

Ethics declarations

Conflict of interest

The author declares that he does not have any conflict of interest pertaining to the results of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaelides, E.E. Hindered electrophoresis of nanoparticles in narrow pores. J Therm Anal Calorim 135, 1363–1371 (2019). https://doi.org/10.1007/s10973-018-7462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7462-x

Keywords

Navigation