Advertisement

Effect of viscous dissipation on MHD water-Cu and EG-Cu nanofluids flowing through a porous medium

A comparative study of Stokes second problem
Article
  • 4 Downloads

Abstract

This paper provides a comparative analysis of two different types of nanofluids for Stokes second problem. Additional effects of MHD, porosity and viscous dissipation are also considered. Two types of Newtonian liquids (water and ethylene glycol) are considered as base fluids with suspended nanosized Cu particles. A homogenous model of Newtonian nanofluids over a flat plate is used to describe this phenomenon with Stokes boundary conditions such that the ambient fluid is static and with uniform temperature. The problem is first written in terms of nonlinear partial differential equations with physical conditions; then after non-dimensional analysis, the Laplace transform method is used for its closed-form solution. Exact expressions are determined for the dimensionless temperature, velocity field, Nusselt number and skin friction coefficient and arranged in terms of exponential and complementary error functions satisfying the governing equations and boundary conditions. They are also reduced to the known solutions of Stokes second problem for Cu-water nanofluids. Results are computed using Maple software. The results showed that both skin friction and rate of heat transfer increase with increasing solid volume fraction of nanoparticles. MHD and porosity had an opposite effect on velocity for both types of nanofluids. The dimensionless temperature increases by increasing the Eckert and Hartmann numbers.

Keywords

Stokes problems Cu-H2 O and Cu-EG nanofluids Viscous dissipation MHD Porosity Exact solutions 

List of symbols

\(B_{0}\)

Strength of magnetic field (wb m−2)

\(c_{\text{p}}\)

Heat capacity at a (J kg−1 K−1) constant pressure

\(\left( {c_{\text{p}} } \right)_{\text{nf}}\)

Nanofluid heat capacity(J kg−1 K−1) at a constant pressure

\(H(t)\)

Heaviside function

\(k\)

Permeability (H m−1)

\(K\)

Porosity parameter

\(k_{\text{f}}\)

Base fluid thermal conductivity (W m−1 k−1)

\(k_{\text{s}}\)

Solid particle thermal conductivity (W m−1 k−1)

\(k_{\text{nf}}\)

Nanofluid thermal conductivity (W m−1 k−1)

\(M\)

Hartmann number

\(\Pr\)

Prandtl number

\(T\)

Temperature of the fluid (K)

\(T_{{\infty }}\)

Ambient temperature (K)

\(t\)

Time (s)

\(u\)

Velocity of the fluid (m s−1)

\({\text{erfc}}\)

Complementary error function

Greek symbols

\(\mu_{\text{f}}\)

Base fluid dynamic viscosity (m2 s−1)

\(\mu_{\text{nf}}\)

Nanofluid dynamic viscosity (m2 s−1)

\(\rho_{\text{f}}\)

Base fluid density (kg m−3)

\(\rho_{\text{s}}\)

Solid particle density (kg m−3)

\(\rho_{\text{nf}}\)

Nanofluid density (kg m−3)

\(\sigma\)

Electric conductivity (S m−1)

\(\sigma^{*}\)

Stefan–Boltzmann constant (W m−2 K−4)

\(\theta\)

Dimensionless temperature

\(\varphi\)

Porosity of the medium (H m−1)

\(\omega\)

Frequency of the oscillation (Hz)

Subscripts

\(f\)

Base fluid

\(s\)

Solid particle nanofluid

nf

Nanofluid

w

Condition at wall

\(\infty\)

Condition at infinity

Superscripts

*

Dimensional variables

References

  1. 1.
    Stokes GG. Trans Camb Philos Soc. 1851;9:8–106.Google Scholar
  2. 2.
    Soundalgekar VM. Rheol Acta. 1981;13:177–9.CrossRefGoogle Scholar
  3. 3.
    Rajagopal KR, Na TY. Acta Mech. 1983;48:233–9.CrossRefGoogle Scholar
  4. 4.
    Rajagopal KR. Int J Non-Linear Mech. 1982;17:369–73.CrossRefGoogle Scholar
  5. 5.
    Puri P. Rheol Acta. 1984;23:451–3.CrossRefGoogle Scholar
  6. 6.
    Tigoiu V. Rev Roum Math Pures Appl. 2000;45:375–82.Google Scholar
  7. 7.
    Tan WC, Masuoka T. Phys Fluids. 2005;17:023101–7.CrossRefGoogle Scholar
  8. 8.
    Fetecau C, Fetecau C. Int J Non-Linear Mech. 2002;38:423–7.CrossRefGoogle Scholar
  9. 9.
    Fetecau C, Jamil M, Fetecau C, Siddique I. Int J Non-Linear Mech. 2009;44:1085–90.CrossRefGoogle Scholar
  10. 10.
    Jordan PM, Feuillade C. Int J Non-Linear Mech. 2009;44:383–8.CrossRefGoogle Scholar
  11. 11.
    Nazar M, Corina F, Vieru D, Fetecau C. Non-Linear Anal Real World Appl. 2010;1:584–91.CrossRefGoogle Scholar
  12. 12.
    Vieru D, Rauf A. Can J Phys. 2011;89:1–12.CrossRefGoogle Scholar
  13. 13.
    Vieru D, Rauf A. Appl Math Inf Sci. 2013;7:209–19.CrossRefGoogle Scholar
  14. 14.
    Ali F, Khan I, Samiulhaq, Sharidan S. Z Naturforsch. 2012;76a:377–80.Google Scholar
  15. 15.
    Khan I, Fakhar K, Sharidan S. Transp Porous Media. 2012;91:49–58.CrossRefGoogle Scholar
  16. 16.
    Khan I, Farhad A, Samiulhaq, Sharidan S. Z Naturforsch. 2013;68a:635–45.Google Scholar
  17. 17.
    Fetecau C, Vieru D, Fetecau C. Int J Non-Linear Mech. 2008;43:451–7.CrossRefGoogle Scholar
  18. 18.
    Zeng Y, Weinbaum S. J Fluid Mech. 1995;287:59–74.CrossRefGoogle Scholar
  19. 19.
    Liu CM. Math Prob Eng. 2008;754262:1–18.CrossRefGoogle Scholar
  20. 20.
    Erdogan ME. Int J Non-Linear Mech. 2000;35:1–6.CrossRefGoogle Scholar
  21. 21.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows. In: Siginer DA, Wang HP, editors. American society of mechanical engineers. New York; 1995. p. 99–105.Google Scholar
  22. 22.
    Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S. In: Proceeding of the symposium on nanophase and nanocomposite materials II, 1997;457:3–11.Google Scholar
  23. 23.
    Buongiorno J. J Heat Transf. 2006;128:240–50.CrossRefGoogle Scholar
  24. 24.
    Dinarvand RH, Abulhasansari M, Pop I. Adv Powder Technol. 2015;26:1423–34.CrossRefGoogle Scholar
  25. 25.
    Sheikholeslami M, Chamkha A. Numer Heat Transf Part A Appl. 2016;69:1186–200.CrossRefGoogle Scholar
  26. 26.
    Sheikholeslami MM, Rashidi M, Hayat T, Ganji DD. J Mol Liquid. 2018;2016:393–9.Google Scholar
  27. 27.
    Khan U, Mohyud-Din ST, Bin-Mohsin B. Aerosp Sci Technol. 2016;50:196–203.CrossRefGoogle Scholar
  28. 28.
    Khan U, Ahmed N, Mohyud-Din ST. J Nanofluids. 2016;5:239–44.CrossRefGoogle Scholar
  29. 29.
    Turkyilmazoglu M, Pop I. Int J Heat Mass Transf. 2013;59:167–71.CrossRefGoogle Scholar
  30. 30.
    Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. Hoboken: Wiley; 2008.Google Scholar
  31. 31.
    Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media, and nanofluids. Boca Raton, New York: CRC Press, Taylor & Francis Group; 2016.CrossRefGoogle Scholar
  32. 32.
    Kakaç S, Pramuanjaroenkij A. Int J Heat Mass Transf. 2009;52:3187–96.CrossRefGoogle Scholar
  33. 33.
    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. Int J Heat Mass Transf. 2013;57:582–94.CrossRefGoogle Scholar
  34. 34.
    Groşan T, Sheremet MA, Pop I. CRC Press, Taylor & Francis, New York, p. 267–284, 2017Google Scholar
  35. 35.
    Zin NAM, Khan I, Sharidan S. J Mol Liquids. 2016;222:138–50.CrossRefGoogle Scholar
  36. 36.
    Aaiza G, Khan I, Shafie S. Nanoscale Res Lett. 2015;490:1–14.Google Scholar
  37. 37.
    Ali F, Madeha G, Khan I. J Mol Liquids. 2016;223:412–9.CrossRefGoogle Scholar
  38. 38.
    Khalid A, Khan I, Sharidan S. J Mol Liquids. 2016;221:1175–83.CrossRefGoogle Scholar
  39. 39.
    Pandey AK, Kumar M. Alex Eng J. 2016;55:3115–23.CrossRefGoogle Scholar
  40. 40.
    Mahanthesh B, Gireesha BJ. Gorla RSR. Sci: Ass Arab Univ Bas Appl; 2016.Google Scholar
  41. 41.
    Makinde OD. Int J Numer Methods Heat Fluid Flow. 2013;23:1291–303.CrossRefGoogle Scholar
  42. 42.
    Naeema I, Khan WA, Khan ZH. J King Saud Univ Sci, in press corrected proof,  https://doi.org/10.1016/j.jksus.2017.05.001.
  43. 43.
    Saqib M, Ali F, Khan IJ. Therm Anal Calorim. 2018;7:1–10.Google Scholar
  44. 44.
    Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7035-z.Google Scholar
  45. 45.
    Esfe MH, Saedodin S. Therm Anal Calorim. 2015;119:1205–13.CrossRefGoogle Scholar
  46. 46.
    Zadkhast M, Toghraie D, Karimipour A. Therm Anal Calorim. 2017;129:859–67.CrossRefGoogle Scholar
  47. 47.
    Arabpour A, Kariipour A, Toghraie D. Therm Anal Calorim. 2018;131:1553–66.CrossRefGoogle Scholar
  48. 48.
    Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Therm Anal Calorim. 2018;131:1757–66.CrossRefGoogle Scholar
  49. 49.
    Rashidi S, Bovand M, Esfahani JA. J Mol Liquids. 2016;215:276–84.CrossRefGoogle Scholar
  50. 50.
    Bovand M, Rashidi S, Esfahani JA. J Thermophys Heat Transf. 2017;31:218–29.CrossRefGoogle Scholar
  51. 51.
    Parizad Laein R, Rashidi S, Abolfazli Esfahani J. Adv Powder Technol. 2016;27:312–22.CrossRefGoogle Scholar
  52. 52.
    Zeibi Shirejini S, Rashidi S, Esfahani JA. J Mol Liq. 2016;220:961–9.CrossRefGoogle Scholar
  53. 53.
    Maskaniyan M, Rashidi S, Esfahani JA. Powder Technol. 2017;312:260–9.CrossRefGoogle Scholar
  54. 54.
    Javadi P, Rashidi S, Esfahani JA. J Thermophys Heat Transf. 2017;31:983–8.CrossRefGoogle Scholar
  55. 55.
    Rashidi S, Ehsan OM, Languri M. J Therm Anal Calorim. 2018;131:2027–39.CrossRefGoogle Scholar
  56. 56.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9.Google Scholar
  57. 57.
    Christov IC. Mech Res Commun. 2010;37:717–23.CrossRefGoogle Scholar
  58. 58.
    Christov IC. Nonlinear Anal: Real World Appl. 2011;12:3687–90.CrossRefGoogle Scholar
  59. 59.
    Christov IC, Christov CI. Acta Mech. 2010;215:25–8.CrossRefGoogle Scholar
  60. 60.
    Christov IC, Jordan PM. Int J Eng Sci. 2012;51:326–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of Mechanical Engineering, College of EngineeringPrince Mohammad Bin Fahd UniversityAl KhobarKingdom of Saudi Arabia

Personalised recommendations