Skip to main content
Log in

Synthesis and thermal decomposition behavior of nitrogen- and oxygen-rich energetic material N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole was readily synthesized from 4,5-dicyano-2H-1,2,3-triazole. Its crystal structure was obtained for the first time and its crystalline density in 296 K was 1.729 g cm−3. It shows high nitrogen and oxygen content up to 77.6%, high calculated solid heat of formation (564 kJ mol−1), and superior detonation pressure and detonation velocity (D = 8619 m s−1, P = 30.8 GPa). This new hydrogen-absent explosive shows high impact and friction sensitivities (IS: 1.25 J, FS: 32 N), which is lower than commercial primary explosive 2-diazonium-4,6-dinitrophenol (DDNP) (IS: 1 J, FS: 5 N). The relationship between intermolecular interaction and sensitivity as well as thermal stability of the title compound was investigated by Hirshfeld surface analysis and fingerprint plot. Its thermodynamic properties were studied by non-isothermal kinetic methods based on the results of differential scanning calorimeter. It is interesting that apparent activation energy (Ea) at Tp1 (210.89–214.17 kJ mol−1) is higher than those at Tp2 (133.90–134.87 kJ mol−1). In addition, gaseous product of this new energetic compound was analyzed by the rapid scanning Fourier transform infrared spectroscopy from 20 to 200 °C and its detonation products was theoretically predicted. Based on the decomposition products, its decomposition mechanism was discussed under inert atmosphere. It is undoubted that these significant physicochemical properties make N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole a potential hydrogen-absent primary explosive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12

Similar content being viewed by others

References

  1. Yin P, Zhang Q, Shreeve JM. Dancing with energetic nitrogen atoms: versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials. Acc Chem Res. 2016;49:4–16.

    Article  CAS  PubMed  Google Scholar 

  2. Kettner MA, Karaghiosoff K, Klapötke TM, Sućeska M, Wunder S. 3,3′-Bi(1,2,4-oxadiazoles) featuring the fluorodinitromethyl and trinitromethyl group. Chem Eur J. 2014;20:1–11.

    Article  CAS  Google Scholar 

  3. Yu Q, Yin P, Zhang J, He C, Imler GH, Parrish DA, Shreeve JM. Pushing the limits of oxygen balance in 1,3,4-oxadiazoles. J Am Chem Soc. 2017;139:8816–9.

    Article  CAS  PubMed  Google Scholar 

  4. Tian J, Xiong H, Lin Q, Cheng G, Yang H. Energetic compounds featuring bi(1,3,4-oxadiazole): a new family of insensitive energetic materials. New J Chem. 2017;41:1918–24.

    Article  CAS  Google Scholar 

  5. Ma Q, Gu H, Huang J, Nie F, Fan G, Liao L, Yang W. Formation of trinitromethyl functionalized 1,2,4-triazole-based energetic ionic salts and a zweitterionic salt directed by an intermolecular and intramolecular metathesis strategy. New J Chem. 2018;42:2376–80.

    Article  CAS  Google Scholar 

  6. He C, Shreeve JM. Energetic materials with promising properties: synthesis and characterization of 4,4′-bis(5-nitro-1,2,3-2H-triazole) derivatives. Angew Chem Int Ed. 2015;51:1–6.

    Google Scholar 

  7. Zhang Y, Du Z, Han Z, Yao Q, Hu Z. Synthesis and thermal analysis of 2-methyl-4,5-dicyano-2H-1,2,3-triazole. J Therm Anal Calorim. 2016;124:529–37.

    Article  CAS  Google Scholar 

  8. Dippold AA, Izsák D, Klapötke TM, Pflüger C. Combining the advantages of tetrazoles and 1,2,3-triazoles:4,5-bis(tetrazol-5-yl)-1,2,3-triazole,4,5-bis(1-hydroxytetrazol-5-yl)-1,2,3-triazole, and their energetic derivatives. Chem Eur J. 2016;22:1768–78.

    Article  CAS  PubMed  Google Scholar 

  9. Dalinger IL, Vatsadze IA, Shkineva TK, Kormanov AV, Struchkova DI, Suponitsky KY, Bragin AA, Monogarov KA, Sinditskii VP, Sheremetev AB. Novel highly energetic pyrazoles: N-trinitromethyl-substituted nitropyrazoles. Chem Asian J. 2015;10:1987–96.

    Article  CAS  PubMed  Google Scholar 

  10. Crawford M-J, Karaghiosoff K, Klapötke TM, Martin FA. Synthesis and characterization of 4,5-dicyano-2H-1,2,3-triazole and its sodium, ammonium, and guanidinium salts. Inorg Chem. 2009;48:1731–43.

    Article  CAS  PubMed  Google Scholar 

  11. Ma Q, Gu H, Lu H, Liao L, Huang J, Fan G, Li J, Liu D. Synthesis of 5,6-di(2-fluoro-2,2-dinitroethoxy)-2,3-dicyanopyrazine by one-step nucleophilic substitution and its energetic properties. ChemistrySelect. 2017;2:4567–71.

    Article  CAS  Google Scholar 

  12. Wang N, Chen B, Ou Y. Review on benzofuroxan system compounds. Propellants Explos Pyrotech. 1994;19:145–8.

    Article  Google Scholar 

  13. Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Tris(triazolo)benzene and its derivatives: high-density energetic materials. Angew Chem Int Ed. 2012;51:9881–5.

    Article  CAS  Google Scholar 

  14. Spackman MA, Jayatilaka D. Hirshfeld surface analysis. Cryst Eng Commun. 2009;11:19–32.

    Article  CAS  Google Scholar 

  15. Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Commun. 2002;4:378–92.

    Article  CAS  Google Scholar 

  16. Yan Q-L, Zeman S, Zhang J, He P, Musil T, Bartoškova M. Multi-stage decomposition of 5-aminotetrazole derivatives: kinetics and reaction channels for the rate-limiting steps. Phys Chem Chem Phys. 2014;16:24282–91.

    Article  CAS  PubMed  Google Scholar 

  17. Ma Q, Lu H, Liao L, Chen Y, Cheng B, Fan G, Huang J. Synthesis and thermal decomposition performance of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole. J Therm Anal Calorim. 2017;127:2517–29.

    Article  CAS  Google Scholar 

  18. Ma Y, Zhang A, Xue X, Jiang D, Zhu Y, Zhang C. Crystal packing of impact-sensitive high-energy explosives. Cryst Growth Des. 2014;14:6101–14.

    Article  CAS  Google Scholar 

  19. Wei X, Ma Y, Long X, Zhang C. A strategy developed from the observed energetic-energetic cocrystals of BTF: cocrystallizing and stabilizing energetic hydrogen-free molecules with hydrogenous energetic coformer molecules. Cryst Eng Commun. 2015;17:7150–9.

    Article  CAS  Google Scholar 

  20. Yan Q-L, Zeman S. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem. 2013;113:1049–61.

    Article  CAS  Google Scholar 

  21. Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117:423–32.

    Article  CAS  Google Scholar 

  22. Liu Y, Jiang YT, Zhang TL, Feng CG, Yang L. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119:659–70.

    Article  CAS  Google Scholar 

  23. Ma Q, Lu H, Qu Y, Liao L, Li J, Fan G, Chen Y. A facile synthesis of 3,3′-dinitro-5,5′-diamino-bi-1,2,4-triazole and a study of its thermal decomposition. Cent Eur J Energy Mater. 2017;14:281–95.

    Article  CAS  Google Scholar 

  24. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  25. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1957;38:1881–6.

    Article  Google Scholar 

  26. Boswell PG. Calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353–6.

    Article  CAS  Google Scholar 

  27. Zhang T, Hu R, Xie Y, Li F. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  28. Pourmortazavi SM, Nasrabadi MR, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials KNF and NTO. J Therm Anal Calorim. 2012;110:857–63.

    Article  CAS  Google Scholar 

  29. Sućeska M. Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos Pyrotech. 1999;24:280–5.

    Article  Google Scholar 

  30. Politzer P, Murray JS, Grice ME, Desalvo M, Miller M. Calculation of heats of sublimation and solid phase heats of formation. Mol Phys. 1997;91:923–8.

    Article  CAS  Google Scholar 

  31. Ma Q, Jiang T, Zhang X, Fan G, Wang J, Huang J. Theoretical investigations on 4,4′,5,5′-tetranitro-2,2′-1H,1′H-2,2′-biimidazole derivatives as potential nitrogen-rich high energy materials. J Phys Org Chem. 2015;28:31–9.

    Article  CAS  Google Scholar 

  32. Klapötke TM, Preimesser A, Stierstorfer J. Synthesis and energetic properties of 4-diazo-2,6-dinitrophenol and 6-diazo-3-hydroxy-2,4-dinitrophenol. Eur J Org Chem. 2015;2015:4311–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (Nos. 11402237 and 11302200), the Science and Technology Development Funds of CAEP (No. 2015B0302055), and the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (No. U1530262) are gratefully acknowledged. We are indebted to Mrs. Lin Wang for considerable assistance with RS-FTIR test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Li, J., Zhang, G. et al. Synthesis and thermal decomposition behavior of nitrogen- and oxygen-rich energetic material N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole. J Therm Anal Calorim 135, 2317–2328 (2019). https://doi.org/10.1007/s10973-018-7390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7390-9

Keywords

Navigation