Skip to main content

Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe

Abstract

Pulsating heat pipe (PHP) is a type of wickless heat pipe that has a simple structure and an outstanding thermal performance. Nanofluid is a type of fluid in which nanoparticles are dispersed in a base fluid and have generally a better thermal conductivity in comparison with its base fluid. In this article, the performance of a nanofluid PHP is investigated. Graphene/water nanofluid with a concentration of 1 mg mL−1 and TiO2 (titania)/water nanofluid with a concentration of 10 mg mL−1 are used as the working fluids. To simultaneously investigate the thermal performance and flow regimes in the PHP, a one-turn copper PHP with a Pyrex glass attached to its adiabatic section is used. A one-turn Pyrex PHP is also used to fully visualize flow patterns in the PHP. Our results show that the material for the fabrication of a PHP and temperature of the working fluid are the most important parameters that affect the stability of a nanofluid in the PHP. The more stable nanofluid keeps its stability in the cupper PHP, while the less stable nanofluid starts to aggregate right after the injection to the cupper PHP. The more stable nanofluid has a better thermal performance than water, while the less stable nanofluid has a worse thermal performance than water. In the case of flow regimes, no significant differences are observed between the nanofluid PHP and the water PHP which is different from the previous observations. These results can help researchers to choose the best working fluid for PHPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

A :

Surface area (m2)

h :

Heat transfer coefficient (W m−2 °C−1)

L :

Length (m)

Q :

Heat input (W)

R :

Thermal resistance (°C W−1)

r :

Radius (m)

T :

Temperature (°C)

\(\delta\) :

Differential operator

cond:

Condenser

Eff:

Effective

evp:

Evaporator

log:

Data logger

References

  1. Akachi H. Structure of a heat pipe. Google Patents; 1990.

  2. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7022-4.

    Article  Google Scholar 

  3. Safaei MR, Ahmadi G, Goodarzi MS, Safdari Shadloo M, Goshayeshi HR, Dahari M. Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets–silver/water nanofluids. Fluids. 2016;1(3):20.

    Article  Google Scholar 

  4. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi S. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):1687814016673569.

    Article  Google Scholar 

  5. Safaei MR, Goodarzi M, Akbari OA, Shadloo MS, Dahari M. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. Electronics cooling. InTech; 2016.

  6. Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed AA, Mashayekhi R, Shabani GAS, Zarringhalam M, Nguyen TK. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.

    Article  CAS  Google Scholar 

  7. Safaei MR, Mahian O, Garoosi F, Hooman K, Karimipour A, Kazi S, Gharehkhani S. Investigation of micro- and nanosized particle erosion in a 90 pipe bend using a two-phase discrete phase model. Sci World J. 2014;2014:30–41.

    Article  Google Scholar 

  8. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi S. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A Stat Mech Appl. 2014;402:150–68.

    Article  CAS  Google Scholar 

  9. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech-B/Fluids. 2015;49:89–99.

    Article  Google Scholar 

  10. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  11. Stalin PMJ, Arjunan T, Matheswaran M, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim.1–16.

  12. Riehl RR, dos Santos N. Water-copper nanofluid application in an open loop pulsating heat pipe. Appl Therm Eng. 2012;42:6–10.

    Article  CAS  Google Scholar 

  13. Zhao N, Zhao D, Ma H. Experimental investigation of magnetic field effect on the magnetic nanofluid oscillating heat pipe. J Therm Sci Eng Appl. 2013;5(1):011005.

    Article  Google Scholar 

  14. Mohammadi M, Taslimifar M, Saidi MH, Shafii MB, Afshin H, Hannani SK. Ferrofluidic open loop pulsating heat pipes: efficient candidates for thermal management of electronics. Exp Heat Transf. 2014;27(3):296–312.

    Article  CAS  Google Scholar 

  15. Goshayeshi H, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci. 2015;68:663–8.

    Article  CAS  Google Scholar 

  16. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci. 2016;74:265–70.

    Article  CAS  Google Scholar 

  17. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    Article  CAS  Google Scholar 

  18. Lin YH, Kang SW, Chen HL. Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl Therm Eng. 2008;28(11):1312–7.

    Article  CAS  Google Scholar 

  19. Qu J, Wu H. Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Therm Sci. 2011;50(10):1954–62.

    Article  CAS  Google Scholar 

  20. Ji Y, Liu G, Ma H, Li G, Sun Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl Therm Eng. 2013;61(2):690–7.

    Article  CAS  Google Scholar 

  21. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  22. Esfe MH, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.

    Article  Google Scholar 

  23. Wilson C, Borgmeyer B, Winholtz R, Ma H, Jacobson D, Hussey D, Arif M. Visual observation of oscillating heat pipes using neutron radiography. J Thermophys Heat Transf. 2008;22(3):366–72.

    Article  CAS  Google Scholar 

  24. Bhuwakietkumjohn N, Rittidech S. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture. Exp Therm Fluid Sci. 2010;34(8):1000–7.

    Article  CAS  Google Scholar 

  25. Li QM, Zou J, Yang Z, Duan YY, Wang BX. Visualization of two-phase flows in nanofluid oscillating heat pipes. J Heat Transf. 2011;133(5):052901.

    Article  Google Scholar 

  26. Goshayeshi HR, Chaer I. Experimental study and flow visualization of Fe2O3/kerosene in glass oscillating heat pipes. Appl Therm Eng. 2016;103:1213–8.

    Article  CAS  Google Scholar 

  27. Gandomkar A, Saidi MH, Shafii M, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65.

    Article  CAS  Google Scholar 

  28. Kang SW, Wang YC, Liu YC, Lo HM. Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe. Appl Therm Eng. 2017;126:1044–50.

    Article  CAS  Google Scholar 

  29. Mohammadi M, Fray D, Mohammadi A. Sol–gel nanostructured titanium dioxide: controlling the crystal structure, crystallite size, phase transformation, packing and ordering. Microporous Mesoporous Mater. 2008;112(1):392–402.

    Article  CAS  Google Scholar 

  30. https://xgsciences.com/wp-content/uploads/2017/11/xGnP-C.-MD00001.-2018-1.pdf.

  31. Holman JP, Gajda WJ. Experimental methods for engineers. New York: McGraw-Hill; 2004.

    Google Scholar 

  32. Kim SJ, Bang IC, Buongiorno J, Hu L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50(19):4105–16.

    Article  CAS  Google Scholar 

  33. Ma H, Wilson C, Yu Q, Park K, Choi U, Tirumala M. An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe. J Heat Transf. 2006;128(11):1213–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Iran National Science Foundation (INSF), through Grant No. 940017 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Saidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akbari, A., Saidi, M.H. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim 135, 1835–1847 (2019). https://doi.org/10.1007/s10973-018-7388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7388-3

Keywords

  • Pulsating heat pipe (PHP)
  • Titania/water nanofluid
  • Graphene/water nanofluid
  • Flow patterns/regimes
  • Thermal performance