2-Amino-6-methylpyridinium nitrophenolate nitrophenol

An organic multiple charge-transfer complex with large second harmonic generation for optoelectronics applications
  • B. Babu
  • J. Chandrasekaran
  • V. Jayaramakrishnan
  • Mon-Shu Ho
  • K. Thirupugalmani
  • S. Chandrasekar
  • R. Thirumurugan
Article

Abstract

Organic co-crystals fashioned with two or more different constituents through intermolecular non-covalent interactions (hydrogen and halogen bonds) gain cumulative research considerations as of their applications in ambipolar charge transport, nonlinear optics (NLO), light-driven actuator, liquid crystal material and electronics industry. In this contribution, charge-transfer (CT) interactions and the corresponding physicochemical and nonlinear properties of bulk organic, CT co-crystal of 2-amino-6-methylpyridinium nitrophenolate nitrophenol (2A6MPNN) were comprehensively investigated. CT crystals were fabricated by the facile solvent evaporation strategy and crystallized with an extensive hydrogen bonding network existed between the aromatic donor (D) and acceptor (A). The organic salt formation of phenol–pyridine co-crystal was investigated by using 1H NMR, 13C NMR and FTIR. More importantly, we show that the CT interactions in co-crystals are related to their molecular packing which eventually leads to distinct optoelectronic properties. The convincing evidence for multiple CT was found by UV–Vis spectral measurements, i.e., both π–π and n–π* interactions (between 4-nitrophenol and 2-amino-6-methylpyridine) are simultaneously present and additionally new feature band arises at 408 nm. Remarkably, upon photoexcitation at 374 nm in the solid state, CT displays an unusual emission around 572 nm, which is probably attributed for the shallow traps of the ion pairs, along with a usual phenolate-centered green emission. Thermal analysis was performed using TG/DTA/DSC and Modulated DSC studies. NLO response on CT powder (for diverse particle sizes) indicates a phase matchability and NLO coefficient about 1.8-fold larger than that of urea.

Keywords

Organic Solution growth Nonlinear Thermal 

Notes

Acknowledgements

The authors are indebted to Prof. P.K. Das, Department of Inorganic and Physical Chemistry, IISc, Bangalore for the SHG measurements.

Supplementary material

10973_2018_7386_MOESM1_ESM.docx (120 kb)
Compositional and density measurement; 1H-NMR and 13C NMR spectrum figures (DOCX 119 kb)

References

  1. 1.
    Geng H, Zheng X, Shuai Z, Zhu L, Yi Y. Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. Adv Mater. 2015;27:1443–9.CrossRefGoogle Scholar
  2. 2.
    Zhu L, Yi Y, Fonari A, Corbin NS, Coropceanu V, Brédas J-L. Electronic properties of mixed-stack organic charge-transfer crystals. J Phys Chem C. 2014;118:14150–6.CrossRefGoogle Scholar
  3. 3.
    Mahns B, Kataeva O, Islamov D, Hampel S, Steckel F, Hess C, Knupfer M, Büchner B, Himcinschi C, Hahn T, Renger R, Kortus J. Crystal growth, structure, and transport properties of the charge-transfer salt picene/2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Cryst Growth Des. 2014;14:1338–46.CrossRefGoogle Scholar
  4. 4.
    Qin Y, Cheng C, Geng H, Wang C, Hu W, Xu W, Shuai Z, Zhu D. Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys Chem Chem Phys. 2016;18:14094–103.CrossRefGoogle Scholar
  5. 5.
    Yasutake M, Araki K, Zhou M, Nogita R, Shinmyozu T. Solid-state structural study of the charge-transfer complexes of 5,7,9-trimethyl- and 2,11,20-trithia[33](1,3,5)cyclophanes. Eur J Org Chem. 2003;2003:1343–51.CrossRefGoogle Scholar
  6. 6.
    Gutmann F, Johnson C, Keyzer H, Molnar J. Charge transfer complexes in biochemistry system. Amsterdam: Elsevier; 1997.Google Scholar
  7. 7.
    Palacios RE, Kodis G, Gould SL, De la Garza L, Brune A, Gust D, Moore TA, Moore AL. Artificial photosynthetic reaction centers: mimicking sequential electron and triplet-energy transfer. Chem Phys Chem. 2005;6:2359–70.CrossRefGoogle Scholar
  8. 8.
    Marcy HO, DeLoach LA, Liao JH, Kanatzidis MG, Velsko SP, Rosker MJ, Warren LF, Ebbers CA, Cunningham PH, Thomas CA. l-Histidine tetrafluoroborate: a solution-grown semiorganic crystal for nonlinear frequency conversion. Opt Lett. 1995;20:252–4.CrossRefGoogle Scholar
  9. 9.
    Wang XQ, Xu D, Yuan DR, Yu WT, Sun SY, Yang ZH, Fag Q, Lu K, Yan YX, Meng FQ, Guo SY, Zhang GH, Jiang MH. Synthesis, structure and properties of a new nonlinear optical material: zinc cadmium tetrathiocyanate. Mater Res Bull. 1999;34:2003–11.CrossRefGoogle Scholar
  10. 10.
    Duan XL, Yuan DR, Wang XQ, Cheng XF, Yang ZH, Guo SY, Sun HQ, Klu XM. Preparation and characterization of nonlinear optical crystal materials: cadmium mercury thiocyanate and its lewis base adducts. Cryst Res Technol. 2002;37:446–55.CrossRefGoogle Scholar
  11. 11.
    Bock H, Nagel N, Seibel A. Interactions in molecular crystals, 123. Crystallization and structure of donor–acceptor complexes between rigid or conformationally flexible thio-crowns and iodine. Liebigs Annalen. 1997;10:2151–9.CrossRefGoogle Scholar
  12. 12.
    Khan IM, Ahmad A, Oves M. Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of P-phenylenediamine with π acceptor picric acid. Spectrochim Acta A. 2010;77:1059–64.CrossRefGoogle Scholar
  13. 13.
    Sajan D, Vijayan N, Safakath K, Reji P, Hubert JI. Intramolecular charge transfer and Z-scan studies of a semiorganic nonlinear optical material sodium acid phthalate hemihydrate: a vibrational spectroscopic study. J Phys Chem A. 2011;115:8216–26.CrossRefGoogle Scholar
  14. 14.
    Miniewicz A, Palewska K, Sznitko L, Lipinski J. Single- and two-photon excited fluorescence in organic nonlinear optical single crystal 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole. J Phys Chem A. 2011;115:10689–97.CrossRefGoogle Scholar
  15. 15.
    Ivanova BB, Spiteller M. Noncentrosymmetric crystals with marked nonlinear optical properties. J Phys Chem A. 2010;114:5099–103.CrossRefGoogle Scholar
  16. 16.
    Antipin MY, Timofeeva TV, Clark RD, Nesterov VN, Sanghadasa M, Barr TA, Penn B, Romero L, Romero M. Molecular crystal structures and nonlinear optical properties in the series of dicyanovinylbenzene and its derivatives. J Phys Chem A. 1998;102:7222–32.CrossRefGoogle Scholar
  17. 17.
    Krishnakumar M, Karthick S, Thirupugalmani K, Babu B, Vinitha G. Growth, spectral, optical, laser damage threshold and DFT investigations on 2-amino 4-methyl pyridinium 4-methoxy benzoate (2A4MP4MB): a potential organic third order nonlinear optical material for optoelectronic applications. Opt Laser Technol. 2018;101:91–106.CrossRefGoogle Scholar
  18. 18.
    Gandhimathi A, Karunakaran RT, ElakkinaKumaran A, Prabahar S. Spectroscopic and quantum chemical perspectives on 2-amino 5-methylpyridinium 4-nitrobenzoate—an organic single crystals for optoelectronics device applications. Opt Laser Technol. 2018;103:291–9.CrossRefGoogle Scholar
  19. 19.
    Latha Mageshwari PS, Priya R, Krishnan S, Joseph V, Jerome Das S. Growth, optical, thermal, dielectric and mechanical studies of sodium hydrogen succinate single crystal. J Therm Anal Calorim. 2017;128:29–37.CrossRefGoogle Scholar
  20. 20.
    McAteer CH, Balasubramanian M, Murugan R. In: Katrtzky AR, Ramsden CA, Scriven EFV, Taylor RJK, editors. Comprehensive heterocyclic chemistry III, vol. 7. Oxford: Elsevier; 2008. p. 309–36.CrossRefGoogle Scholar
  21. 21.
    Murugesan V, Saravanabhavan M, Sekar M. Synthesis, spectroscopic characterization and structural investigation of a new charge transfer complex of 2,6-diaminopyridine with 4-nitrophenylacetic acid: antimicrobial, DNA binding/cleavage and antioxidant studies. Spectrochim Acta A. 2015;147:99–106.CrossRefGoogle Scholar
  22. 22.
    Srinivasan P, Vidyalakshmi Y, Gopalakrishnan R. Studies on the synthesis, growth, crystal structure, and nonlinear optical properties of a novel nonlinear optical crystal: l-argininium-4-nitro phenolate monohydrate (LARP). Cryst Growth Des. 2008;8:2329–34.CrossRefGoogle Scholar
  23. 23.
    Jaya Prakash M, Radhakrishnan TP. Remote functionalized nonlinear optical chromophore: optimal assembly in crystals for second harmonic generation. Cryst Growth Des. 2005;5:721–5.CrossRefGoogle Scholar
  24. 24.
    Muthuraman M, Bagieu-Beucher M, Masse R, Nicoud JF, Desiraju GR. Sodium 4-nitrophenolate 4-nitrophenol dihydrate crystal: a new herringbone structure for quadratic nonlinear optics. J Mater Chem. 1999;9:1471–4.CrossRefGoogle Scholar
  25. 25.
    Huang K-S, Britton D, Ettera MC, Byrn SR. A novel class of phenol–pyridine co-crystals for second harmonic generation. J Mater Chem. 1997;7:713–20.CrossRefGoogle Scholar
  26. 26.
    Draguta S, Fonari MS, Masunov AE, Zazueta J, Sullivan S, Antipin MY, Timofeeva TV. New acentric materials constructed from aminopyridines and 4-nitrophenol. CrystEngComm. 2013;15:4700–10.CrossRefGoogle Scholar
  27. 27.
    Chen T, Sun Z, Li L, Wang S, Wang Y, Luo J, Hong M. Growth and characterization of a nonlinear optical crystal—2,6-diaminopyridinium 4-nitrophenolate 4-nitrophenol (DAPNP). J Cryst Growth. 2012;338:157–61.CrossRefGoogle Scholar
  28. 28.
    Oudar JL, Chemla DS. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys. 1977;66:2664.CrossRefGoogle Scholar
  29. 29.
    Suponitsky KY, Liao Y, Masunov AE. Supramolecular step in design of nonlinear optical materials: effect of π…π stacking aggregation on hyperpolarizability. J Phys Chem A. 2009;113:10994–1001.CrossRefGoogle Scholar
  30. 30.
    Evans CC, Bagieu-Beucher M, Masse R, Nicoud JF. Nonlinearity enhancement by solid-state proton transfer: a new strategy for the design of nonlinear optical materials. Chem Mater. 2014;10:847–54.CrossRefGoogle Scholar
  31. 31.
    Shanmugam G, Ravi Kumar K, Sridhar B, Brahadeeswaran S. Synthesis, structure, growth and characterization of a novel organic NLO single crystal: Morpholin-4-ium p-aminobenzoate. Mater Res Bull. 2012;47:2315–23.CrossRefGoogle Scholar
  32. 32.
    Socrates G. Infrared characteristic group frequencies. New York: Wiley; 1980.Google Scholar
  33. 33.
    Mazzarello AJ, Szatyłowicz H, Krygowski TM. Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes. J Mol Model. 2012;18:127–35.CrossRefGoogle Scholar
  34. 34.
    Green JHS, Harrison DJ. Vibrational spectra of benzene derivatives—X: monosubstituted nitrobenzenes. Spectrochim Acta A. 1970;26:1925–37.CrossRefGoogle Scholar
  35. 35.
    Thirupugalmani K, Karthick S, Shanmugam G, Kannan V, Sridhar B, Nehru K, Brahadeeswaran S. Second- and third-order nonlinear optical and quantum chemical studies on 2-amino-4-picolinium-nitrophenolate-nitrophenol: a phasematchable organic single crystal. Opt Mater. 2015;49:158–70.CrossRefGoogle Scholar
  36. 36.
    Srinivasan P, Kanagasekaran T, Gopalakrishnan R, Bhagavannarayana G, Ramasamy P. Studies on the growth and characterization of l-asparaginium picrate (LASP)a novel nonlinear optical crystal. Cryst Growth Des. 2006;6:1663–70.CrossRefGoogle Scholar
  37. 37.
    Zhang J, Chen J, Xu B, Wang L, Ma S, Dong Y, Li B, Ye L, Tian W. Remarkable fluorescence change based on the protonation–deprotonation control in organic crystals. Chem Commun. 2013;49:3878–80.CrossRefGoogle Scholar
  38. 38.
    Yuan MS, Wang DE, Xue P, Wang W, Wang JC, Tu Q, Liu Z, Liu Y, Zhang Y, Wang J. Fluorenone organic crystals: two-color luminescence switching and reversible phase transformations between π–π stacking-directed packing and hydrogen bond-directed packing. Chem Mater. 2014;26:2467–77.CrossRefGoogle Scholar
  39. 39.
    Senthil K, Kalainathan S, Ruban Kumar A. Bulk size crystal growth, spectral, optical, luminescence, thermal, mechanical, and dielectric properties of organic single crystal. J Therm Anal Calorim. 2014;118:323–31.CrossRefGoogle Scholar
  40. 40.
    Liu X, Lin H, Xiao Z, Fan W, Huang A, Wang R, Zhang L, Sun D. Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Trans. 2016;45:3743–9.CrossRefGoogle Scholar
  41. 41.
    Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys. 1968;39:3798–815.CrossRefGoogle Scholar
  42. 42.
    Martin Britto Dhas SA, Bhagavannarayana G, Natarajan S. Growth and characterization of a new potential NLO material from the amino acid family—l-prolinium picrate. J Cryst Growth. 2008;310:3535–9.CrossRefGoogle Scholar
  43. 43.
    Srinivasan TP, Anandhi S, Gopalakrishnan R. Growth and characterization of 2-amino-4-picolinium 4-aminobenzoate single crystals. Spectrochim Acta A. 2010;75:1223–7.CrossRefGoogle Scholar
  44. 44.
    Srinivasan P, Kanagasekaran T, Vijayan N, Bhagavannarayana G, Gopalakrishnan R, Ramasamy P. Studies on the growth, optical, thermal and dielectric aspects of a proton transfer complex—dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) crystals for non-linear optical applications. Opt Mater. 2007;30:553–64.CrossRefGoogle Scholar
  45. 45.
    Chen T, Sun Z, Song C, Ge Y, Luo J, Lin W, Hong M. Bulk crystal growth and optical and thermal properties of the nonlinear optical crystal l-histidinium-4-nitrophenolate 4-nitrophenol (LHPP). Cryst Growth Des. 2012;12:2673–8.CrossRefGoogle Scholar
  46. 46.
    Jagadesan A, Peramaiyan G, Mohan Kumar R, Arjunan S. Growth, optical, thermal and laser damage threshold studies of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol crystal. J Cryst Growth. 2015;418:153–7.CrossRefGoogle Scholar
  47. 47.
    Pavlovetc IM, Draguta S, Fokina MI, Timofeeva TV, Denisyuk IY. Synthesis, crystal growth, thermal and spectroscopic studies of acentric materials constructed from aminopyridinesand 4-nitrophenol. Opt Commun. 2016;362:64–8.CrossRefGoogle Scholar
  48. 48.
    Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int J Pharm. 1999;192:3–20.CrossRefGoogle Scholar
  49. 49.
    Kannan V, Brahadeeswaran S. Synthesis, growth, thermal, optical and mechanical studies on 2-amino-6-methylpyridinium 4-hydroxybenzoate. J Therm Anal Calorim. 2016;124:889–98.CrossRefGoogle Scholar
  50. 50.
    Syed Suresh Babu K, Peramaiyan G, Nizam Mohideen M, Mohan R. Crystal structure, growth and characterizations of semiorganic nonlinear optical (Bis) isonicotinamide perchlorate monohydrate (BINPM). J Therm Anal Calorim. 2015;120:1337–45.CrossRefGoogle Scholar
  51. 51.
    Onitsch EM. Über die Mikrohärte der Metalle. Mikroscopia. 1947;2:131–51.Google Scholar
  52. 52.
    Babu B, Chandrasekaran J, Balaprabhakaran S. Growth and characterization of hexamethylenetetramine crystals grown from solution. Mater Sci Pol. 2014;32:164–70.CrossRefGoogle Scholar
  53. 53.
    Poton CB, Rawlings RD. Vickers indentation fracture toughness test Part 1 review of literature and formulation of standardised indentation toughness equations. Mater Sci Technol. 1989;5:865–72.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • B. Babu
    • 1
    • 2
  • J. Chandrasekaran
    • 3
  • V. Jayaramakrishnan
    • 4
  • Mon-Shu Ho
    • 1
    • 2
  • K. Thirupugalmani
    • 5
  • S. Chandrasekar
    • 1
    • 2
  • R. Thirumurugan
    • 6
  1. 1.Department of PhysicsNational Chung Hsing UniversityTaichung CityTaiwan
  2. 2.Innovation and Development Center of Sustainable Agriculture (IDCSA)National Chung Hsing UniversityTaichung CityTaiwan
  3. 3.Crystal Research Laboratory, Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  4. 4.Centro de Investigaciones en OpticaLeónMexico
  5. 5.Crystal Research Laboratory, Department of PhysicsERK Arts and Science CollegeDharmapuriIndia
  6. 6.Department of Physics, School of PhysicsMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations