Skip to main content
Log in

Study of thermal analysis and kinetic decomposition of polybutadiene acrylonitrile acrylic acid (PBAN)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes thermochemical properties and decomposition characteristics of polybutadiene acrylonitrile acrylic acid (PBAN). The thermal behavior of PBAN samples containing various amounts of nitrile groups was determined by simultaneous thermogravimetric analysis and differential scanning calorimetry (TG/DSC). The results indicate that nitrile content in PBAN affects thermal behavior markedly. The influence of heating rate on the DSC behavior of the PBAN was investigated, while thermal decomposition of these compounds followed the first-order law. The kinetic parameters such as activation energy and frequency factor for these compounds were obtained from the DSC data by non-isothermal methods. Also the impact of different ratio of nitrile content in PBAN on glass transition temperature (Tg) of this terpolymer was measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sutton E, editor. From polysulfides to CTPB binders—a major transition in solid propellant binder chemistry. In: 20th joint propulsion conference; 1984.

  2. George C. Block II solid rocket motor (SRM) Conceptual design study contract NAS 8-37295. National Aeronautics and Space Administration, NASA Technical reports server (NTRS). NASA-CR-179050. 1986. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890004118.pdf. Accessed 6 Nov 1995.

  3. Andrepont W, Felix R, editors. The History of large solid rocket motor development in the United States. In: 30th joint propulsion conference and exhibit; 1994.

  4. Moore T, editor. Assessment of HTRB and PBAN propellant usage in the United States. In: 33rd joint propulsion conference and exhibit; 1997.

  5. Klager K, editor. Polyurethanes, the most versatile binder for solid composite propellants. In: 20th joint propulsion conference; 1984.

  6. Daniel MA. Polyurethane binder systems for polymer bonded explosives. Defence Science and Technology Organisation Edinburgh (Australia) Weapons Systems DIV, 2006.

  7. Caveny LH, Geisler RL, Ellis RA, Moore TL. Solid rocket enabling technologies and milestones in the United States. J Propul Power. 2003;19(6):1038–66.

    Article  Google Scholar 

  8. Manu SK. Glycidyl azide polymer GAP as a high energy polymeric binder for composite solid propellant applications. Information and Library Network (INFLIBNET). 2009. http://hdl.handle.net/10603/22818. Accessed 13 Aug 2014.

  9. Davenas A. Development of modern solid propellants. J Propul Power. 2003;19(6):1108–28.

    Article  CAS  Google Scholar 

  10. Ang HG, Pisharath S. Energetic polymers. New York: Wiley; 2012.

    Google Scholar 

  11. Hunley J, editor. The history of solid-propellant rocketry—what we do and do not know. In: 35th joint propulsion conference and exhibit; 1999.

  12. Zurawski R, Rapp D, editors. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles. In: 23rd joint propulsion conference; 1987.

  13. Hunley J, editor. The history of solid-propellant rocketry—what we do and do not know. In: 35th joint propulsion conference and exhibit; 1999.

  14. Smith B, Williams N, Miller J, Ralston J, Richardson J, Moore W. Block II SRM Conceptual Design Studies Final Report. National Aeronautics and Space Administration, NASA Technical reports server (NTRS). NASA-CR-179048. 1986. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870011601.pdf. Accessed 4 Nov 1995.

  15. Geisler R, editor. My memoirs of solid propellant development at the air force rocket propulsion laboratory. In: 29th joint propulsion conference and exhibit; 1993.

  16. Hallion RP. NASA launch systems, space transportation/human spaceflight, and space science, 1989–1998. Air Power Hist. 2012;59(3):59–60.

    Google Scholar 

  17. Yamazaki K, Tokui H. The cross-linking reaction of the poly butadiene binder for composite propellants. Bull Chem Soc Jpn. 1965;38(12):2174–8.

    Article  CAS  Google Scholar 

  18. Tokui H, Yamazaki K. The effects of some antioxidants on the elastomers derived from carboxy-terminated polybutadiene. Bull Chem Soc Jpn. 1966;39(10):2290–4.

    Article  CAS  Google Scholar 

  19. French DM. Functionally terminated butadiene polymers. Rubber Chem Technol. 1969;42(1):71–109.

    Article  CAS  Google Scholar 

  20. Martin J, Cadenato A, Salla J. Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models. Thermochim Acta. 1997;306(1):115–26.

    Article  CAS  Google Scholar 

  21. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162(2):1557–62.

    Article  CAS  Google Scholar 

  22. Lu Y-C, Kuo KK. Thermal decomposition study of hydroxyl-terminated polybutadiene (HTPB) solid fuel. Thermochim Acta. 1996;275(2):181–91.

    Article  CAS  Google Scholar 

  23. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO DNAZ. J Hazard Mater. 2009;169(1):1068–73.

    Article  CAS  Google Scholar 

  24. Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP–Poly (BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–77.

    Article  CAS  Google Scholar 

  25. Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4.

    Article  CAS  Google Scholar 

  26. Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75(2):551–7.

    Article  CAS  Google Scholar 

  27. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93(1):143–52.

    Article  CAS  Google Scholar 

  28. Wang Q, Wang L, Zhang X, Mi Z. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172(2):1659–64.

    Article  CAS  Google Scholar 

  29. Wang K, Wang J, Guo T, Wang W, Liu D. Research on the thermal decomposition kinetics and the isothermal stability of HMX. J Therm Anal Calorim. 2018;1:1–6.

    CAS  Google Scholar 

  30. Zhang W, Ren H, Sun Y, Yan S, Jiao Q. Effects of ester-terminated glycidyl azide polymer on the thermal stability and decomposition of GAP by TG-DSC-MS-FTIR and VST. J Therm Anal Calorim. 2018;1:1–10.

    Google Scholar 

  31. Guo M, Ma Z, He L, He W, Wang Y. Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical properties of nitramine propellants. J Therm Anal Calorim. 2017;130(2):909–18.

    Article  CAS  Google Scholar 

  32. Zhang J, Xue B, Rao G, Chen L, Chen W. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2017;1:1–9.

    Google Scholar 

  33. Gołofit T, Zyśk K. Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO. J Therm Anal Calorim. 2015;119(3):1931–9.

    Article  Google Scholar 

  34. Tingfa D. Thermal decomposition studies of solid propellant binder HTPB. Thermochim Acta. 1989;138(2):189–97.

    Article  Google Scholar 

  35. Beyler CL, Hirschler MM. Thermal decomposition of polymers. SFPE Handb Fire Protect Eng. 2002;7:1–131.

    Google Scholar 

  36. Shono T, Shinra K. Determination of the microstructure of polybutadiene by pyrolysis-gas chromatography. Anal Chim Acta. 1971;56(2):303–7.

    Article  CAS  Google Scholar 

  37. Ericsson I. Sequential pyrolysis gas chromatographic study of the decomposition kinetics of cis-1, 4-polybutadiene. J Chromatogr Sci. 1978;16(8):340–4.

    Article  CAS  Google Scholar 

  38. Tamura S, Gillham JK. Pyrolysis–molecular weight chromatography–vaporphase infrared spectrophotometry: an online system for analysis of polymers. IV. Influence of cis/trans ratio on the thermal degradation of 1, 4-polybutadienes. J Appl Polym Sci. 1978;22(7):1867–84.

    Article  CAS  Google Scholar 

  39. Radhakrishnan T, Rao MR. Thermal decomposition of polybutadienes by pyrolysis gas chromatography. J Polym Sci Polym Chem Ed. 1981;19(12):3197–208.

    Article  CAS  Google Scholar 

  40. Arisawa H, Brill T. Flash pyrolysis of hydroxyl-terminated polybutadiene (HTPB) II: implications of the kinetics to combustion of organic polymers. Combust Flame. 1996;106(1–2):144–54.

    Article  CAS  Google Scholar 

  41. ASTM E. 698-05 Standard test method for arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the flynn. Wall/Ozawa Method. 2005.

  42. Sunitha M, Nair CR, Krishnan K, Ninan K. Kinetics of alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides—a DSC study. Thermochim Acta. 2001;374(2):159–69.

    Article  CAS  Google Scholar 

  43. Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344(1):73–9.

    Article  CAS  Google Scholar 

  44. Ebewele RO. Polymer science and technology. Boca Raton: CRC Press LLC; 2000.

    Book  Google Scholar 

  45. Lee W, Sewell J. Influence of cohesive forces on the glass transition temperatures of polymers. J Appl Polym Sci. 1968;12(6):1397–409.

    Article  CAS  Google Scholar 

  46. He T, Li B, Ren S. Glass transition temperature and chain flexibility of 1, 2-polybutadiene. J Appl Polym Sci. 1986;31(3):873–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Malek-Ashtar University of Technology. The authors would like to thank the department of energy and materials also organic chemistry department for TG/DSC and DSC/Tg measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Bayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, Y., Bayat, M.H. Study of thermal analysis and kinetic decomposition of polybutadiene acrylonitrile acrylic acid (PBAN). J Therm Anal Calorim 134, 1091–1100 (2018). https://doi.org/10.1007/s10973-018-7384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7384-7

Keywords

Navigation