Numerical study of heat transfer enhancement from a heated circular cylinder by using nanofluid and transverse oscillation

A comparative study
Article
  • 4 Downloads

Abstract

Adding nanoparticles into the base fluid and oscillating the target surface are two passive and active techniques, respectively, for heat transfer enhancement. The aim of this paper is to investigate numerically the concurrent use of alumina/water nanofluid and transverse oscillation in convective heat transfer of a heated circular cylinder. Using computational fluid dynamics, unsteady laminar two-dimensional cross-flow for low Reynolds numbers is examined. The governing equations including continuity, momentum and thermal energy are solved by the standard finite volume method. The maximum volume fraction of nanofluid is 3%, while Reynolds numbers are between 100 and 200. The thermophysical properties are assumed to be temperature dependent. The heat transfer and drag coefficients are computed in lock-on regime where the frequency of vortex shedding and applied frequency to the cylinder is equal. Obtained results show that for heat transfer enhancement in cross-flow in the range of studied parameters, using alumina/water nanofluid is more effective than the oscillation of cylinder.

Keywords

Numerical study Nanofluid Oscillating cylinder Heat transfer enhancement Lock-on regime 

List of symbols

A

Non-dimensional amplitude (y/D)

C

Courant number

CD

Drag coefficient

Cp

Heat capacity (J kg−1 K−1)

D

Diameter (m)

F

Non-dimensional frequency (f/fs)

f

Frequency of oscillation (s−1)

fs

Strouhal frequency (s−1)

have

Average heat transfer coefficient

Nu

Nusselt number

P

Pressure

Pr

Prandtl number

Re

Reynolds number

St

Strouhal number (fsD/u)

T

Temperature (K)

t

Time (s)

u

X component of velocity (m s−1)

v

Y component of velocity (m s−1)

x

X direction (m)

y

Y direction (m)

Subscripts

ave

Average

bf

Base fluid

eff

Effective property of nanofluid

f

Fluid

n

Nanofluid

o

Oscillatory

p

Particle

s

Stationary

w

Water

Greek letters

φ

Volume fraction

µ

Dynamic viscosity (kg m−1 s−1)

ρ

Density (kg m−3)

θ

Angle (rad)

Notes

Acknowledgements

The authors wish to thank Dr. Maddahian for his valuable comments on numerical solution of the problem.

References

  1. 1.
    Ganvir R, Walke P, Kriplani V. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev. 2017;75:451–60.CrossRefGoogle Scholar
  2. 2.
    Prasad KK, Ramanathan V. Heat transfer by free convection from a longitudinally vibrating vertical plate. Int J Heat Mass Transf. 1972;15(6):1213IN31221–12201223.CrossRefGoogle Scholar
  3. 3.
    Zdravkovich MM. Flow around circular cylinders volume 2: applications. Oxford: Oxford University Press; 1997.Google Scholar
  4. 4.
    Rajani B, Kandasamy A, Majumdar S. Numerical simulation of laminar flow past a circular cylinder. Appl Math Model. 2009;33(3):1228–47.CrossRefGoogle Scholar
  5. 5.
    Zdravkovich M. Flow around circular cylinders. vol. 2: applications. Oxford University Press, ISBN 0, Vol 19, No. 856561, 2003. p. 5.Google Scholar
  6. 6.
    Sumner D. Two circular cylinders in cross-flow: a review. J Fluids Struct. 2010;26(6):849–99.CrossRefGoogle Scholar
  7. 7.
    Koopmann G. The vortex wakes of vibrating cylinders at low Reynolds numbers. J Fluid Mech. 1967;28(3):501–12.CrossRefGoogle Scholar
  8. 8.
    Gau C, Wu J, Liang C. Heat transfer enhancement and vortex flow structure over a heated cylinder oscillating in the crossflow direction. ASME J Heat Transf. 1999;121:789–95.CrossRefGoogle Scholar
  9. 9.
    Fu W-S, Tong B-H. Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow. Int J Heat Mass Transf. 2002;45(14):3033–43.CrossRefGoogle Scholar
  10. 10.
    Nobari M, Naderan H. A numerical study of flow past a cylinder with cross flow and inline oscillation. Comput Fluids. 2006;35(4):393–415.CrossRefGoogle Scholar
  11. 11.
    Valipour MS, Ghadi AZ. Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid. Int Commun Heat Mass Transf. 2011;38(9):1296–304.CrossRefGoogle Scholar
  12. 12.
    Sarkar S, Ganguly S, Biswas G. Mixed convective heat transfer of nanofluids past a circular cylinder in cross flow in unsteady regime. Int J Heat Mass Transf. 2012;55(17):4783–99.CrossRefGoogle Scholar
  13. 13.
    Mabood F, Khan W, Yovanovich M. Forced convection of nanofluid flow across horizontal circular cylinder with convective boundary condition. J Mol Liq. 2016;222:172–80.CrossRefGoogle Scholar
  14. 14.
    Sarkar S, Ganguly S, Biswas G, Saha P. Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder. Comput Fluids. 2016;127:47–64.CrossRefGoogle Scholar
  15. 15.
    Cheng CH, Hong JL. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. Int J Heat Mass Transf. 1997;40(8):1825–34.CrossRefGoogle Scholar
  16. 16.
    Cheng CH, Chen HN, Aung W. Experimental study of the effect of transverse oscillation on convection heat transfer from a circular cylinder. J Heat Transf. 1997;119:474–82.CrossRefGoogle Scholar
  17. 17.
    Ternik P, Rudolf R. Laminar forced convection heat transfer characteristics from a heated cylinder in water based nanofluids. Int J Simul Model. 2014;13(3):312–22.CrossRefGoogle Scholar
  18. 18.
    Hagen KD. Heat transfer with applications. Upper Saddle River: Prentice Hall; 1999.Google Scholar
  19. 19.
    Albojamal Ahmed, Hamzah Hudhaifa, Haghighi Arman, Vafai Kambiz. Analysis of nanofluid transport through a wavy channel. Numer Heat Transf Part A Appl. 2017;72(12):869–90.CrossRefGoogle Scholar
  20. 20.
    Heyhat MM, Kowsary F. Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Transf. 2010;132(6):062401.CrossRefGoogle Scholar
  21. 21.
    Behroyan I, Ganesan P, He S, Sivasankaran S. CFD models comparative study on nanofluids subcooled flow boiling in a vertical pipe. Numer Heat Transf Part A Appl. 2018;73(1):55–74.CrossRefGoogle Scholar
  22. 22.
    Pryazhnikov M, Minakov A, Rudyak VY, Guzei D. Thermal conductivity measurements of nanofluids. Int J Heat Mass Transf. 2017;104:1275–82.CrossRefGoogle Scholar
  23. 23.
    Bianco V, Manca O, Nardini S, Vafai K. Heat transfer enhancement with nanofluids. Boca Raton: CRC Press; 2015.CrossRefGoogle Scholar
  24. 24.
    Leong K, Yang C, Murshed S. A model for the thermal conductivity of nanofluids–the effect of interfacial layer. J Nanopart Res. 2006;8(2):245–54.CrossRefGoogle Scholar
  25. 25.
    Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52(21):4675–82.CrossRefGoogle Scholar
  26. 26.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.CrossRefGoogle Scholar
  27. 27.
    Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.CrossRefGoogle Scholar
  28. 28.
    Patankar S. Numerical heat transfer and fluid flow, Hemisphere Publ. New York: Corp; 1980.Google Scholar
  29. 29.
    Guilmineau E, Queutey P. A numerical simulation of vortex shedding from an oscillating circular cylinder. J Fluids Struct. 2002;16(6):773–94.CrossRefGoogle Scholar
  30. 30.
    Churchill S, Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. ASME J Heat Transf. 1977;99:300–6.CrossRefGoogle Scholar
  31. 31.
    Hosseinian A, Meghdadi Isfahani AH. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger. Heat Mass Transf. 2018;54:1113–20.CrossRefGoogle Scholar
  32. 32.
    Hosseinian A, Meghdadi Isfahani AH, Shirani E. Experimental investigation of surface vibration effects on increasing the stability and heat transfer coeffcient of MWCNTs-water nanofluid in a flexible double pipe heat exchanger. Exp Therm Fluid Sci. 2018;90:275–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Seyede Bahare Mousavi
    • 1
  • Mohammad Mahdi Heyhat
    • 1
  1. 1.Faculty of Mechanical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations