Skip to main content
Log in

Analysis of mixed convection and entropy generation of nanofluid filled triangular enclosure with a flexible sidewall under the influence of a rotating cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, mixed convection and entropy generation in a nanofluid filled triangular cavity under the influence of rotating cylinder and flexible sidewall were numerically analyzed with finite element method. The inclined sidewall was cooled while the left vertical wall is partially heated. Heat transfer rate enhances as the values of Rayleigh number, angular rotational velocity of the cylinder, elastic modulus of the flexible sidewall and solid nanoparticles volume fraction increase. Nusselt number enhances more in the counter-clockwise direction of the cylinder as compared to clockwise directional rotation and 13.55% of average heat transfer enhancement was achieved for \(\varOmega =3000\) when compared to motionless cylinder. Average Nusselt number increases by about 30.50% when the elastic modulus of the flexible wall is changed from 500 to \(10^5\). The changes in the velocity profiles are significant for the lower part of the triangular enclosure with respect to changes in angular rotational velocity and elastic modulus as compared to upper part of the cavity. Adding nanoparticles increases heat transfer especially for the lower part of the cavity and 49.63% of heat transfer enhancement was achieved for the highest volume fraction when compared to base fluid. Normalized total entropy generation rates enhance for higher values of elastic modulus of the flexible wall, angular rotational speed of the circular cylinder and nanoparticle volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sharif MA, Mohammad TR. Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. Int J Therm Sci. 2005;44:865–78.

    Article  Google Scholar 

  2. Kandaswamy P, Lee J, Hakeem AA. Natural convection in a square cavity in the presence of heated plate. Nonlinear Anal Model Control. 2007;12:203–12.

    Google Scholar 

  3. Fusegi T, Hyun JM, Kuwahara K, Farouk B. A numerical study of three dimensional natural convection in a differentially heated cubical enclosure. J Heat Mass Transf. 1991;34:1543–57.

    Article  Google Scholar 

  4. Varol Y, Koca A, Oztop H. Natural convection in a triangle enclosure with flush mounted heater on the wall. Int Commun Heat Mass Transf. 2006;33:951–8.

    Article  Google Scholar 

  5. Panda SK, Chhabra RP. Laminar forced convection heat transfer from a rotating cylinder to power-law fluids. Numer Heat Transf Part A. 2011;59:297–319.

    Article  Google Scholar 

  6. Costa V, Raimundo A. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. Int J Heat Mass Transf. 2010;53:1208–19.

    Article  CAS  Google Scholar 

  7. Paramane SB, Sharma A. Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int J Heat Mass Transf. 2009;52:3205–16.

    Article  Google Scholar 

  8. Roslan R, Saleh H, Hashim I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int J Heat Mass Transf. 2012;55:7247–56.

    Article  CAS  Google Scholar 

  9. Selimefendigil F, Oztop HF. Mixed convection in a two-sided elastic walled and sio2 nanofluid filled cavity with internal heat generation: effects of inner rotating cylinder and nanoparticle’s shape. J Mol Liq. 2015;212:509–16.

    Article  CAS  Google Scholar 

  10. Selimefendigil F, Oztop HF. Analysis of mhd mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int J Mech Sci. 2016;118:113–24.

    Article  Google Scholar 

  11. Selimefendigil F, Oztop HF. Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J Magn Magn Mater. 2016;417:327–37.

    Article  CAS  Google Scholar 

  12. Selimefendigil F, Oztop HF. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J Therm Sci Eng Appl. 2018;10:041003-1–7.

    Article  CAS  Google Scholar 

  13. Selimefendigil F, Oztop HF. Cooling of a partially elastic isothermal surface by nanofluids jet impingement. J Heat Transf. 2018;140:042205-1–7.

    Article  CAS  Google Scholar 

  14. Jamesahar E, Ghalambaz M, Chamkha AJ. Fluid-solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int J Heat Mass Transf. 2016;100:303–19.

    Article  Google Scholar 

  15. Khanafer K, Vafai K, Gaith M. Fluid-structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. Int Commun Heat Mass Transf. 2016;75:315–22.

    Article  Google Scholar 

  16. Selimefendigil F, Oztop HF, Abu-Hamdeh N. Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2-water nanofluids: effect of nanoparticle shape. Int Commun Heat Mass Transf. 2016;71:9–19.

    Article  CAS  Google Scholar 

  17. Khanafer K. Comparison of flow and heat transfer characteristics in a lid-driven cavity between flexible and modified geometry of a heated bottom wall. Int J Heat Mass Transf. 2014;78:1032–41.

    Article  Google Scholar 

  18. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  19. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018:1–24 (in press)

  20. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim 2018:1–24 (in press)

  21. Amani M, Amani P, Kasaeian A, Mahian O, Yan WM. Two-phase mixture model for nanofluid turbulent flow and heat transfer: effect of heterogeneous distribution of nanoparticles. Chem Eng Sci. 2017;167:135–44.

    Article  CAS  Google Scholar 

  22. Hayat T, Aziz A, Muhammad T, Alsaedi A. Three-dimensional flow of nanofluid with heat and mass flux boundary conditions. Chin J Phys. 2017;55:1495–510.

    Article  CAS  Google Scholar 

  23. Bondareva NS, Sheremet MA, Oztop F, NidalAbu-Hamdeh H. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28:244–55.

    Article  CAS  Google Scholar 

  24. Rahman MM, Alam MS, Al-Salti N, Eltaye IA. Hydromagnetic natural convective heat transfer flow in an isosceles triangular cavity filled with nanofluid using two-component nonhomogeneous model. Int J Therm Sci. 2016;107:272–88.

    Article  CAS  Google Scholar 

  25. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  26. Nielda D, Kuznetsov A. Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2014;70:430–3.

    Article  Google Scholar 

  27. Sheikholeslami M, Oztop HF. Mhd free convection of nanofluid in a cavity with sinusoidal walls by using cvfem. Chin J Phys. 2017;55:2291–304.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M, Chamkha AJ, Rana P, Moradi R. Combined thermophoresis and brownian motion effects on nanofluid free convection heat transfer in an l-shaped enclosure. Chin J Phys. 2017;55:2356–70.

    Article  CAS  Google Scholar 

  29. Sheikholeslami M, Rokni H. Influence of melting surface on mhd nanofluid flow by means of two phase model. Chin J Phys. 2017;55:1352–60.

    Article  CAS  Google Scholar 

  30. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:13261336.

    Article  Google Scholar 

  31. Roy G, Gherasim I, Nadeau F, Poitras G, Nguyen CT. Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. Int J Therm Sci. 2012;58:120–9.

    Article  CAS  Google Scholar 

  32. Selimefendigil F, Oztop HF. Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int J Heat Mass Transf. 2014;69:54–65.

    Article  CAS  Google Scholar 

  33. Selimefendigil F, Oztop HF. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid. Int Commun Heat Mass Transf. 2013;45:111–21.

    Article  CAS  Google Scholar 

  34. Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J Mol Liq. 2017;230:121–8.

    Article  CAS  Google Scholar 

  35. Selimefendigil F, Oztop HF. Jet impingement cooling and optimization study for a partly curved isothermal surface with CuO-water nanofluid. Int Commun Heat Mass Transf. 2017;89:211–8.

    Article  CAS  Google Scholar 

  36. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48:1486–93.

    Article  CAS  Google Scholar 

  37. Selimefendigil F, Oztop HF. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2018;117:331–43.

    Article  CAS  Google Scholar 

  38. Selimefendigil F, Oztop HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;110:231–47.

    Article  CAS  Google Scholar 

  39. Chamkha AJ, Abu-Nada E. Mixed convection flow in single- and double-lid driven square cavities filled with water-\(\text{ Al }_{2} \text{ O }_{3}\) nanofluid: effect of viscosity models. Eur J Mech B/Fluids. 2012;36:82–96.

    Article  Google Scholar 

  40. Gumgum S, Sezgin MT. Drbem solution of mixed convection flow of nanofluids in enclosures with moving walls. J Comput Appl Math. 2014;259:730–40.

    Article  Google Scholar 

  41. Cimpean DS, Pop I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int J Heat Mass Transf. 2012;55:907–14.

    Article  CAS  Google Scholar 

  42. Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B/Fluids. 2010;29:472–82.

    Article  Google Scholar 

  43. Mahian O, Mahmud S, Heris SZ. Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy. 2012;44:438–46.

    Article  CAS  Google Scholar 

  44. Mahian O, Mahmud S, Heris SZ. Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids. J Heat Transf. 2012;134:101704.

    Article  CAS  Google Scholar 

  45. Mahian O, Mahmud S, Wongwises S. Entropy generation between two rotating cylinders with magnetohydrodynamic flow using nanofluids. J Thermophys Heat Transf. 2013;27:161–9.

    Article  CAS  Google Scholar 

  46. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:721–32.

    Article  Google Scholar 

  47. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    Article  CAS  Google Scholar 

  48. Oztop HF, Al-Salem K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Energy Rev. 2012;16:911–20.

    Article  CAS  Google Scholar 

  49. Esmaeilpour M, Abdollahzadeh M. Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci. 2012;52:127–36.

    Article  CAS  Google Scholar 

  50. Cho CC. Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. Int J Heat Mass Transf. 2014;77:818–27.

    Article  CAS  Google Scholar 

  51. Jamesahar E, Ghalambaz M, Chamkha AJ. Fluid-solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int J Heat Mass Transf. 2016;100:303–19.

    Article  Google Scholar 

  52. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (\({\text{ Al }}_2{\text{ O }}_3\)) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  CAS  Google Scholar 

  53. Minsta HA, Roy G, Nguyen C, Doucet D. New temperature and conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  54. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  55. Bourantas G, Skouras E, Loukopoulos V, Burganos V. Heat transfer and natural convection of nanofluids in porous media. Eur J Mech B/Fluids. 2014;43:45–56.

    Article  Google Scholar 

  56. Ghasemi B, Aminossadati S. Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int Commun Heat Mass Transf. 2010;37:1142–8.

    Article  CAS  Google Scholar 

  57. Iwatsu R, Hyun J, Kuwahara K. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf. 1993;36:1601–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Selimefendigil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selimefendigil, F., Oztop, H.F. & Chamkha, A.J. Analysis of mixed convection and entropy generation of nanofluid filled triangular enclosure with a flexible sidewall under the influence of a rotating cylinder. J Therm Anal Calorim 135, 911–923 (2019). https://doi.org/10.1007/s10973-018-7317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7317-5

Keywords

Navigation