Role of the phase transition at GaN QDs formation on (0001)AlN surface by ammonia molecular beam epitaxy

  • Kseniya A. Konfederatova
  • Vladimir G. Mansurov
  • Timur V. Malin
  • Yurij G. Galitsyn
  • Ivan A. Aleksandrov
  • Vladimir I. Vdovin
  • Konstantin S. Zhuravlev
Article

Abstract

We report an original method of GaN/AlN quantum dots (QDs) formation with low density by ammonia MBE on the (0001)AlN surface using a decomposition process of GaN thin layer. The QDs formation has been investigated in situ by reflection high-energy electron diffraction technique. Low density of quantum dots has been obtained in the range 107–109 cm−2. Single quantum dots photoluminescence lines corresponding to exciton and biexiton transitions were observed in micro-photoluminescence spectra. A lattice gas model was developed for correct description of the GaN QDs statistical ensemble on the surface. Effective interaction between QDs results in the discontinuous phase transitions (first-order phase transitions) from low density of QDs (gas branch) to condensed phase of QDs. The GaN QDs formation has been confirmed by high-resolution transmission electron microscopy and micro-photoluminescence of single quantum dots.

Keywords

Reflection high-energy electron diffraction (RHEED) Surface processes Adsorption Molecular beam epitaxy III-Nitrides 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grants 17-52-04023, 16-02-00175, 17-02-00947).

References

  1. 1.
    Sergent S, Kako S, Bürger M, Schupp T, As DJ, Arakawa Y. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. Appl Phys Lett. 2014;105(14):141112.CrossRefGoogle Scholar
  2. 2.
    Bimberg D, Grundmann M, Ledentsov NN. Quantum dot heterostructures. New York: Wiley; 1999.Google Scholar
  3. 3.
    Kawasaki K, Yamazaki D, Kinoshita A, Hirayama H, Tsutsui K, Aoyagi Y. GaN quantum-dot formation by self-assembling droplet epitaxy and application to single-electron transistors. Appl Phys Lett. 2001;79(14):2243–5.CrossRefGoogle Scholar
  4. 4.
    Schupp T, Meisch T, Neuschl B, Feneberg M, Thonke K, Lischka K, As DJ. Droplet epitaxy of zinc-blende GaN quantum dots. Cryst Growth. 2010;312(21):3235–7.CrossRefGoogle Scholar
  5. 5.
    Li S, Ware M, Wu J, Minor P, Wang Z, Wu Z, Jiang Y, Salamo GJ. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett. 2012;101(12):122103.CrossRefGoogle Scholar
  6. 6.
    Li S, Zhang T, Wu J, Yang Y, Wang Z, Wu Z, Chen Z, Jiang Y. Polarization induced hole doping in graded Al x Ga1−x N (x = 0.7–1) layer grown by molecular beam epitaxy. Appl Phys Lett. 2013;102(6):062108.CrossRefGoogle Scholar
  7. 7.
    Li S, Ware ME, Wu J, Kunets VP, Hawkridge M, Minor P, Wang Z, Wu Z, Jiang Y, Salamo GJ. Polarization doping: reservoir effects of the substrate in AlGaN graded layers. Appl Phys. 2012;112(5):053711.CrossRefGoogle Scholar
  8. 8.
    Michler P. Single semiconductor quantum dots. Berlin: Springer; 2009.CrossRefGoogle Scholar
  9. 9.
    DiVincenzo DP. Double quantum dot as a quantum bit. Science. 2005;309(5744):2173–4.CrossRefGoogle Scholar
  10. 10.
    Mowbray DJ, Skolnick MS. New physics and devices based on self-assembled semiconductor quantum dots. J Phys D Appl Phys. 2005;38(13):2059.CrossRefGoogle Scholar
  11. 11.
    Liang CT, Simmons MY, Smith CG, Kim GH, Ritchie DA, Pepper M. Multilayered gated lateral quantum dot devices. Appl Phys Lett. 2000;76(9):1134–6.CrossRefGoogle Scholar
  12. 12.
    Daudin B, Widmann F, Feuillet G, Samson Y, Arlery M, Rouviere JL. Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN. Phys Rev B. 1997;56(12):R7069.CrossRefGoogle Scholar
  13. 13.
    Song H, Lee SH, Jang ES, Kim DW, Navamathavan R, Kim JS, Lee CR. Growth of InxGa1−xN quantum dots by nitridation of nano-alloyed droplet method using MOCVD. Cryst Growth. 2009;311(19):4418–22.CrossRefGoogle Scholar
  14. 14.
    Damilano B, Brault J, Massies J. Formation of GaN quantum dots by molecular beam epitaxy using NH3 as nitrogen source. Appl Phys. 2015;118(2):024304.CrossRefGoogle Scholar
  15. 15.
    Naritsuka S, Kondoa T, Otsuboa H, Saitoha K. Yamamotob Yo, Maruyama T. In situ annealing of GaN dot structures grown by droplet epitaxy on (111) Si substrates Cryst. Growth. 2007;300:118–22.CrossRefGoogle Scholar
  16. 16.
    Mahdavi M, Farrokhpour H, Tahriri M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants. J Therm Anal Calorim. 2018;132:879–93.CrossRefGoogle Scholar
  17. 17.
    Abdellahi M, Jabbarzare S, Ghayour H, Khandan A. Thermal and X-ray analyses of aluminum–titaniumnanocomposite powde. J Therm Anal Calorim. 2018;131:853–86.CrossRefGoogle Scholar
  18. 18.
    Zhang J, Li S, Xiong H, Tian W, Li Y, Fang Y, Wu Z, Dai J, Xu J, Li X, Chen C. Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD. Nano Res Lett. 2014;9:341–5.CrossRefGoogle Scholar
  19. 19.
    Zięborak-Tomaszkiewicz I. Some thermodynamic aspects of nitrides in materials science. J Therm Anal Calorim. 2006;3:611–5.CrossRefGoogle Scholar
  20. 20.
    Zangwill A. Physics at surfaces. Cambridge: Cambridge University Press; 1988. p. 278.CrossRefGoogle Scholar
  21. 21.
    Galitsyn YuG, Lyamkina AA, Moshchenko SP, Shamirzaev TS, Zhuravlev KS, Toropov AI. Self-assembled quantum dots: from Stranski-Krastanov to droplet epitaxy. In: Belucci S, editor. Self-assembly of nanostructures. New York: Springer; 2012. p. 127–200.CrossRefGoogle Scholar
  22. 22.
    Milakhin DS, Malin TV, Mansurov VG, Galitsyn YG, Zhuravlev KS. Chemical kinetics and thermodynamics of the AlN crystalline phase formation on sapphire substrate in ammonia MBE. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7116-z.Google Scholar
  23. 23.
    Galitsyn YG, Dmitriev DV, Mansurov VG, Moshchenko SP, Toropov AI. Role of lateral interaction in the homoepitaxy of GaAs on the (001) − β (2 × 4) surface. JETP Lett. 2007;86(7):482–6.CrossRefGoogle Scholar
  24. 24.
    Galitsyn YG, Dmitriev DV, Mansurov VG, Moshchenko SP, Toropov AI. Asymmetric c (4 × 4) → γ(2 × 4) reconstruction phase transition on the (001) GaAs surface. JETP Lett. 2007;84(9):505–8.CrossRefGoogle Scholar
  25. 25.
    Galitsyn YG, Dmitriev DV, Mansurov VG, Moshchenko SP, Toropov AI. Critical phenomena in the β − (2 × 4) → α − (2 × 4) reconstruction transition on the (001) GaAs surface. JETP Lett. 2005;81(12):629–33.CrossRefGoogle Scholar
  26. 26.
    Kako S, Hoshino K, Iwamoto S, Ishida S, Arakawa Y. Exciton and biexciton luminescence from single hexagonal GaN/AlN self-assembled quantum dots. Appl Phys Lett. 2004;85(1):64–6.CrossRefGoogle Scholar
  27. 27.
    Grundmann M, Bimberg D. Theory of random population for quantum dots. Phys Rev B. 1997;55(15):9740.CrossRefGoogle Scholar
  28. 28.
    Bacher G, Weigand R, Seufert J, Kulakovskii VD, Gippius NA, Forchel A, Leonardi K, Hommel D. Biexciton versus exciton lifetime in a single semiconductor quantum dot. Phys Rev Lett. 1999;83(21):4417.CrossRefGoogle Scholar
  29. 29.
    Simeonov D, Dussaigne A, Butte R, Grandjean N. Complex behavior of biexcitons in GaN quantum dots due to a giant built-in polarization field. Phys Rev B. 2008;77(7):075306.CrossRefGoogle Scholar
  30. 30.
    Amloy S, Yu KH, Karlsson KF, Farivar R, Andersson TG, Holtz PO. Size dependent biexciton binding energies in GaN quantum dots. Appl Phys Lett. 2011;99(25):251903.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Kseniya A. Konfederatova
    • 1
  • Vladimir G. Mansurov
    • 1
  • Timur V. Malin
    • 1
  • Yurij G. Galitsyn
    • 1
  • Ivan A. Aleksandrov
    • 1
  • Vladimir I. Vdovin
    • 1
  • Konstantin S. Zhuravlev
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, SB RASNovosibirskRussia

Personalised recommendations