Skip to main content
Log in

Effect of Arrhenius energy factor on molecular interactions of binary liquid mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Density (ρ) and speed of sound (u) data have been measured at temperatures 298.15 and 318.15 K and at atmospheric pressure for binary mixtures of aniline with toluene and isomeric chlorotoluenes namely o-chlorotoluene (oct), m-chlorotoluene (mct), p-chlorotoluene (pct) over the entire composition range. Experimental density and speed of sound data (u) have been used to calculate the excess volumes (VE), isentropic compressibilities (κs), excess isentropic compressibilities (κ Es ), excess intermolecular free length (L Ef ), deviation in sound speed (Δu), and excess acoustic impedance (ZE) were computed for all mixtures. The results have been used to explore molecular interactions and structural effects which are prevailing between component molecules. The experimental speed of sound data was analyzed in terms of Schaaff’s collision factor theory and Jacobson’s free length theory to test their relative predicting ability in terms of pure component liquids. Also, apparent molar volume (\(\overline{V}_{{\varphi ,{\text{i}}}}^{{}}\)) and partial molar volume (\(\overline{V}_{\text{i}}^{{}}\)), excess partial molar volume, (\(\overline{V}_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{V}_{\rm{\varphi ,i}}^{ \circ }\), \(\overline{V}_{\rm i}^{ \circ }\) and \(\overline{V}_{\rm m,i}^{\rm{E,\infty }}\), and partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{{}}\)), excess partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{\kappa }_{\varphi , {\rm i}}^{ \circ }\), \(\overline{\kappa }_{\rm i}^{ \circ }\) and \(\overline{\kappa }_{\rm m,{\rm i}}^{E,\infty }\), respectively, have been calculated from the experimental density measurements. The variation of thermal properties with composition and temperature of the mixtures was analyzed in terms of molecular interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rowlinson JS, Swinton FL. Liquids and liquid mixtures. London: Bulterworths; 1982.

    Google Scholar 

  2. Canosa JM, Rodriguez A, Iglesias M, Orge B, Tojo J. Thermodynamic properties of alkenediols + acetates at 298.15 K. J Therm Anal Calorim. 1998;52:915–32.

    Article  CAS  Google Scholar 

  3. Marongiu B, Piras A, Porcedda S, Tuveri E. Excess enthalpies of chloroalkylbenzene + n-heptane(or)cyclohexane mixtures. J Therm Anal Calorim. 2007;91(1):37–46.

    Article  CAS  Google Scholar 

  4. Mukesh B, Gowrisankar M, Srinivasa Krishna T, et al. Studies on the importance of thermodynamic and transport properties of liquid mixtures at various temperatures. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6972-x.

    Article  Google Scholar 

  5. Vasundhara P, Narasimharao C, Venkatramana L, Sivakumar K, Gardas RL. Thermodynamic properties of binary mixtures of aniline with halogenated aromatic hydrocarbons: measurements and correlations. J Mol Liq. 2015;202:158–64.

    Article  CAS  Google Scholar 

  6. Keown Mc, Nathanael J, Tarabar, Asim, editors. Toluene Toxicity: background, pathophysiology, epidemiology. 2015.

  7. Streicher HZ, Gabow PA, Moss AH, Kono D, Kaehny WD. Syndromes of toluene sniffing in adults. Ann Intern Med. 1981;94:758–62.

    Article  CAS  PubMed  Google Scholar 

  8. Devathasan G, Low D, Teoh PC, Wan SH, Wong PK. Complications of chronic glue (toluene) abuse in adolescents. Aust N Z J Med. 1984;14:39–43.

    Article  CAS  PubMed  Google Scholar 

  9. Madhusudhan Reddy P, Sivakumar K, Venkatesu P. Densities and ultrasonic studies for binary mixtures of tetrahydrofuran with chlorobenzenes, chloro toluenes and nitrotoluenes at 298.15 K. Fluid Phase Equilib. 2011;310:74–81.

    Article  CAS  Google Scholar 

  10. Venkatramana L, Gardas RL, Sivakumar K, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.

    Article  CAS  Google Scholar 

  11. Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzyl alcohol. Thermochim Acta. 2014;581:123–32.

    Article  CAS  Google Scholar 

  12. Venkatramana L, Sreenivasulu K, Sivakumar K, Dayananda Reddy K. Thermodynamic properties of binary mixtures containing 1-alkanols. J Therm Anal Calorim. 2014;115:1829–34.

    Article  CAS  Google Scholar 

  13. TrezezaHowicez AJ, Kiyohara O, Benson GC. Excess volumes for n-alkanols +n-alkanes IV. Binary mixtures of decan-1-ol +n-pentane, +n-hexane, +n-octane, +n-decane, and +n-hexadecane. J Chem Thermodyn. 1981;13:253–60.

    Article  Google Scholar 

  14. Syamala V, Sivakumar K, Venkateswarlu P. Volumetric, ultrasonic and viscometric studies of binary mixtures of dimethyl sulphoxide with chloro and nitro substituted aromatic hydrocarbons at T = 303.15 K. J Chem Thermodyn. 2006;38:1553–62.

    Article  CAS  Google Scholar 

  15. Narendra K, Srinivasu Ch, Kalpana Ch, Narayanamurthy P. Excess thermo dynamic parameters of binary mixtures of toluene and mesitylene with anisaldehyde using ultrasonic technique at different temperatures. J Therm Anal Calorim. 2012;107:25–30.

    Article  CAS  Google Scholar 

  16. Brown HC, Cahn A. J Am Chem Soc. 1955;77:1715–23.

    Article  CAS  Google Scholar 

  17. Raveendra M, Narasimharao C, Venkatramana L, Sivakumar K, Dayananda Reddy K. FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols. J Chem Thermodyn. 2016;92:97–107.

    Article  CAS  Google Scholar 

  18. Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.

    Article  CAS  Google Scholar 

  19. Iloukhani H, Ghorbani R. Volumetric properties of N,N-dimethylformamide with 1,2-alkanediols at 20 °C. J Solution Chem. 1998;27:141–9.

    Article  CAS  Google Scholar 

  20. Assarson P, Eirich FR. Properties of amides in aqueous solution. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). J Phys Chem. 1968;72:2710–9.

    Article  Google Scholar 

  21. Schaaff W. Computation of molecular radius from molar volume and velocity of sound. Z Med Phys. 1940;115:69–75.

    Google Scholar 

  22. Jacobson B. Intermolecular free lengths in the liquid state. Acta Chem Scand. 1952;8:1485–98.

    Article  Google Scholar 

  23. Jacobson B. Intermolecular free length in liquids in relation to sound velocity. J Chem Phys. 1952;20:927–8.

    Article  CAS  Google Scholar 

  24. AlTuwaim MS, Alkhaldi HAEK, Al-Jimaz SA, Mohammad AA. Comparative study physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures. J Chem Thermodyn. 2012;48:39–47.

    Article  CAS  Google Scholar 

  25. Dipali C, Anand A. Apparent molar volume and apparent molar adiabatic compressibility of 2-hydroxy-5 methyl acetophenone in N,N-dimethylformamide at different temperatures. J Therm Anal Calorim. 2012;107:21–40.

    Article  CAS  Google Scholar 

  26. Pal A, Singh W. Speeds of sound and isentropic compressibilities of xCH3O(CH2)2OH + (1 − x)H(CH2) ν(OCH2CH2)2OH (ν = 1, 2, and 4) at the temperature T = 298.15 K, The. J Chem Thermodyn. 1997;29:639–48.

    Article  CAS  Google Scholar 

  27. Kawaizumi F, Ohno M, Miyahara Y. Ultrasonic and volumetric investigation of aqueous solutions of amides. Bull Chem Soc Jpn. 1977;50:2229–33.

    Article  CAS  Google Scholar 

  28. Sreekanth K, Kondaiah M, Sravanakumar D, KrishnaRao D. Excess acoustical and volumetric properties and theoretical estimation of ultrasonic velocities in binary mixtures of 2-chloro aniline with acrylic esters at 308.15 K. J Solut Chem. 2012;41:1088–102.

    Article  CAS  Google Scholar 

  29. Sk Md Nayeem, Kondaiah M, Sreekanth K, Srinivasa Reddy M, Krishna Rao D. Thermoacoustic, volumetric, and viscometric investigations in the binary mixtures of 1,4-dioxane with n-hexane or n-heptane or n-octane. J Therm Anal Calorim. 2016;123:2241–55.

    Article  CAS  Google Scholar 

  30. Ali A, Nain AK, Kumar N. Mohammad Ibrahim. Ultrasonic studies on solutions of 1-pentanol with amides. Acoust Lett. 2001;24:199–205.

    CAS  Google Scholar 

  31. Pal A, Bhardway RK. Ultrasonic speeds and volumetric properties of dipropylene glycol monomethyl ether–n-alkylamine mixtures at 298.15 K. Z Phys Chem. 2002;216:1033–51.

    Article  CAS  Google Scholar 

  32. Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification solutions. J Ind Eng Chem. 1948;40:345–448.

    Article  Google Scholar 

  33. Hwang CA, Holstc JC, Hall KR, Mansoori GA. A simple relation to predict or to correlate the excess functions of multicomponent mixtures. Fluid Phase Equilib. 1991;62:173–89.

    Article  CAS  Google Scholar 

  34. Raveendra M, Chandrasekhar M, Narasimharao C, Venkatramanna L, Siva Kumar K, Dayananda Reddy K. Elucidation of hydrogen bonding formation by a computational, FT-IR spectroscopic and theoretical study between benzyl alcohol and isomeric cresols. RSC Adv. 2016;6:27335–48.

    Article  CAS  Google Scholar 

  35. Pal Amalendu, Kumar Anil, Kumar Harsh. Volumetric properties of binary mixtures of some n-alkoxyethanols with 2-pyrrolidinone and N-methyl-2-pyrrolidinone at 298.15 K. Indian J Chem. 2002;41:2017–24.

    Google Scholar 

  36. Wang X, Yang F, Yuan G, Liu Z. Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K. J Chem Thermodyn. 2013;57:145–51.

    Article  CAS  Google Scholar 

  37. Hall L. The origin of ultrasonic absorption in water. Phys Rev. 1948;73:775–84.

    Article  CAS  Google Scholar 

  38. Desnoyers JE, Perron G. Treatment of excess thermodynamic quantities for liquid mixtures. J Solut Chem. 1997;26:749–55.

    Article  CAS  Google Scholar 

  39. Nan Z, Tan ZC. Thermodynamic properties of the binary mixture of water and n-butanol. J Therm Anal Calorim. 2007;87:539–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasibhatta S. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasundhara, P., Raveendra, M., Narasimharao, C. et al. Effect of Arrhenius energy factor on molecular interactions of binary liquid mixtures. J Therm Anal Calorim 135, 2541–2564 (2019). https://doi.org/10.1007/s10973-018-7261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7261-4

Keywords

Navigation