Abstract
Density (ρ) and speed of sound (u) data have been measured at temperatures 298.15 and 318.15 K and at atmospheric pressure for binary mixtures of aniline with toluene and isomeric chlorotoluenes namely o-chlorotoluene (oct), m-chlorotoluene (mct), p-chlorotoluene (pct) over the entire composition range. Experimental density and speed of sound data (u) have been used to calculate the excess volumes (VE), isentropic compressibilities (κs), excess isentropic compressibilities (κ Es ), excess intermolecular free length (L Ef ), deviation in sound speed (Δu), and excess acoustic impedance (ZE) were computed for all mixtures. The results have been used to explore molecular interactions and structural effects which are prevailing between component molecules. The experimental speed of sound data was analyzed in terms of Schaaff’s collision factor theory and Jacobson’s free length theory to test their relative predicting ability in terms of pure component liquids. Also, apparent molar volume (\(\overline{V}_{{\varphi ,{\text{i}}}}^{{}}\)) and partial molar volume (\(\overline{V}_{\text{i}}^{{}}\)), excess partial molar volume, (\(\overline{V}_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{V}_{\rm{\varphi ,i}}^{ \circ }\), \(\overline{V}_{\rm i}^{ \circ }\) and \(\overline{V}_{\rm m,i}^{\rm{E,\infty }}\), and partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{{}}\)), excess partial isentropic compressibility (\(\overline{\kappa }_{\rm i}^{\rm E}\)) and their limiting values at infinite dilution,\(\overline{\kappa }_{\varphi , {\rm i}}^{ \circ }\), \(\overline{\kappa }_{\rm i}^{ \circ }\) and \(\overline{\kappa }_{\rm m,{\rm i}}^{E,\infty }\), respectively, have been calculated from the experimental density measurements. The variation of thermal properties with composition and temperature of the mixtures was analyzed in terms of molecular interactions.
Graphical Abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rowlinson JS, Swinton FL. Liquids and liquid mixtures. London: Bulterworths; 1982.
Canosa JM, Rodriguez A, Iglesias M, Orge B, Tojo J. Thermodynamic properties of alkenediols + acetates at 298.15 K. J Therm Anal Calorim. 1998;52:915–32.
Marongiu B, Piras A, Porcedda S, Tuveri E. Excess enthalpies of chloroalkylbenzene + n-heptane(or)cyclohexane mixtures. J Therm Anal Calorim. 2007;91(1):37–46.
Mukesh B, Gowrisankar M, Srinivasa Krishna T, et al. Studies on the importance of thermodynamic and transport properties of liquid mixtures at various temperatures. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6972-x.
Vasundhara P, Narasimharao C, Venkatramana L, Sivakumar K, Gardas RL. Thermodynamic properties of binary mixtures of aniline with halogenated aromatic hydrocarbons: measurements and correlations. J Mol Liq. 2015;202:158–64.
Keown Mc, Nathanael J, Tarabar, Asim, editors. Toluene Toxicity: background, pathophysiology, epidemiology. 2015.
Streicher HZ, Gabow PA, Moss AH, Kono D, Kaehny WD. Syndromes of toluene sniffing in adults. Ann Intern Med. 1981;94:758–62.
Devathasan G, Low D, Teoh PC, Wan SH, Wong PK. Complications of chronic glue (toluene) abuse in adolescents. Aust N Z J Med. 1984;14:39–43.
Madhusudhan Reddy P, Sivakumar K, Venkatesu P. Densities and ultrasonic studies for binary mixtures of tetrahydrofuran with chlorobenzenes, chloro toluenes and nitrotoluenes at 298.15 K. Fluid Phase Equilib. 2011;310:74–81.
Venkatramana L, Gardas RL, Sivakumar K, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.
Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Effect of chain length of alcohol on thermodynamic properties of their binary mixtures with benzyl alcohol. Thermochim Acta. 2014;581:123–32.
Venkatramana L, Sreenivasulu K, Sivakumar K, Dayananda Reddy K. Thermodynamic properties of binary mixtures containing 1-alkanols. J Therm Anal Calorim. 2014;115:1829–34.
TrezezaHowicez AJ, Kiyohara O, Benson GC. Excess volumes for n-alkanols +n-alkanes IV. Binary mixtures of decan-1-ol +n-pentane, +n-hexane, +n-octane, +n-decane, and +n-hexadecane. J Chem Thermodyn. 1981;13:253–60.
Syamala V, Sivakumar K, Venkateswarlu P. Volumetric, ultrasonic and viscometric studies of binary mixtures of dimethyl sulphoxide with chloro and nitro substituted aromatic hydrocarbons at T = 303.15 K. J Chem Thermodyn. 2006;38:1553–62.
Narendra K, Srinivasu Ch, Kalpana Ch, Narayanamurthy P. Excess thermo dynamic parameters of binary mixtures of toluene and mesitylene with anisaldehyde using ultrasonic technique at different temperatures. J Therm Anal Calorim. 2012;107:25–30.
Brown HC, Cahn A. J Am Chem Soc. 1955;77:1715–23.
Raveendra M, Narasimharao C, Venkatramana L, Sivakumar K, Dayananda Reddy K. FT-IR spectroscopic study of excess thermodynamic properties of liquid mixtures containing benzylalcohol with alkoxyalkanols. J Chem Thermodyn. 2016;92:97–107.
Venkatramana L, Sivakumar K, Gardas RL, Dayananda Reddy K. Thermodynamics of binary mixtures: the effect of substituents in aromatics on their excess properties with benzylalcohol. Fluid Phase Equilib. 2014;367:7–21.
Iloukhani H, Ghorbani R. Volumetric properties of N,N-dimethylformamide with 1,2-alkanediols at 20 °C. J Solution Chem. 1998;27:141–9.
Assarson P, Eirich FR. Properties of amides in aqueous solution. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). J Phys Chem. 1968;72:2710–9.
Schaaff W. Computation of molecular radius from molar volume and velocity of sound. Z Med Phys. 1940;115:69–75.
Jacobson B. Intermolecular free lengths in the liquid state. Acta Chem Scand. 1952;8:1485–98.
Jacobson B. Intermolecular free length in liquids in relation to sound velocity. J Chem Phys. 1952;20:927–8.
AlTuwaim MS, Alkhaldi HAEK, Al-Jimaz SA, Mohammad AA. Comparative study physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures. J Chem Thermodyn. 2012;48:39–47.
Dipali C, Anand A. Apparent molar volume and apparent molar adiabatic compressibility of 2-hydroxy-5 methyl acetophenone in N,N-dimethylformamide at different temperatures. J Therm Anal Calorim. 2012;107:21–40.
Pal A, Singh W. Speeds of sound and isentropic compressibilities of xCH3O(CH2)2OH + (1 − x)H(CH2) ν(OCH2CH2)2OH (ν = 1, 2, and 4) at the temperature T = 298.15 K, The. J Chem Thermodyn. 1997;29:639–48.
Kawaizumi F, Ohno M, Miyahara Y. Ultrasonic and volumetric investigation of aqueous solutions of amides. Bull Chem Soc Jpn. 1977;50:2229–33.
Sreekanth K, Kondaiah M, Sravanakumar D, KrishnaRao D. Excess acoustical and volumetric properties and theoretical estimation of ultrasonic velocities in binary mixtures of 2-chloro aniline with acrylic esters at 308.15 K. J Solut Chem. 2012;41:1088–102.
Sk Md Nayeem, Kondaiah M, Sreekanth K, Srinivasa Reddy M, Krishna Rao D. Thermoacoustic, volumetric, and viscometric investigations in the binary mixtures of 1,4-dioxane with n-hexane or n-heptane or n-octane. J Therm Anal Calorim. 2016;123:2241–55.
Ali A, Nain AK, Kumar N. Mohammad Ibrahim. Ultrasonic studies on solutions of 1-pentanol with amides. Acoust Lett. 2001;24:199–205.
Pal A, Bhardway RK. Ultrasonic speeds and volumetric properties of dipropylene glycol monomethyl ether–n-alkylamine mixtures at 298.15 K. Z Phys Chem. 2002;216:1033–51.
Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification solutions. J Ind Eng Chem. 1948;40:345–448.
Hwang CA, Holstc JC, Hall KR, Mansoori GA. A simple relation to predict or to correlate the excess functions of multicomponent mixtures. Fluid Phase Equilib. 1991;62:173–89.
Raveendra M, Chandrasekhar M, Narasimharao C, Venkatramanna L, Siva Kumar K, Dayananda Reddy K. Elucidation of hydrogen bonding formation by a computational, FT-IR spectroscopic and theoretical study between benzyl alcohol and isomeric cresols. RSC Adv. 2016;6:27335–48.
Pal Amalendu, Kumar Anil, Kumar Harsh. Volumetric properties of binary mixtures of some n-alkoxyethanols with 2-pyrrolidinone and N-methyl-2-pyrrolidinone at 298.15 K. Indian J Chem. 2002;41:2017–24.
Wang X, Yang F, Yuan G, Liu Z. Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K. J Chem Thermodyn. 2013;57:145–51.
Hall L. The origin of ultrasonic absorption in water. Phys Rev. 1948;73:775–84.
Desnoyers JE, Perron G. Treatment of excess thermodynamic quantities for liquid mixtures. J Solut Chem. 1997;26:749–55.
Nan Z, Tan ZC. Thermodynamic properties of the binary mixture of water and n-butanol. J Therm Anal Calorim. 2007;87:539–44.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vasundhara, P., Raveendra, M., Narasimharao, C. et al. Effect of Arrhenius energy factor on molecular interactions of binary liquid mixtures. J Therm Anal Calorim 135, 2541–2564 (2019). https://doi.org/10.1007/s10973-018-7261-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-018-7261-4