Advertisement

Effects of solvents and solutes on glass-transition thermodynamics and kinetic fragility for amine and alcohol solutions of inorganic salts

  • Yukio Terashima
  • Naoyuki Sugimoto
  • Manami Mori
  • Norikazu Kinoshita
  • Kiyoshi Takeda
Article
  • 24 Downloads

Abstract

We have used differential scanning calorimetry (DSC) to investigate the thermodynamic and kinetic properties of the glass transition of simple amine and alcohol solutions of inorganic salts. Although the glass-transition temperature (Tg) increases with the addition of salts, in common with other solutions, the concentration dependence of the heat-capacity change (∆Cp) at Tg and the kinetic fragility index (m) are quite different for the amine and alcohol solutions. The thermodynamic and kinetic properties depend more strongly on the solvents than on the solutes. By comparing the DSC data with Raman results, we suggest that the glass-transition thermodynamics and kinetics are controlled mainly by the strength or stability of hydrogen-bond structures and the properties of dominant intermolecular interactions in the solutions.

Keywords

Glass transition Fragility Hydrogen-bond DSC 

References

  1. 1.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.CrossRefGoogle Scholar
  2. 2.
    Crowley KJ, Zografi G. The use of thermal methods for predicting glass-former fragility. Thermochim Acta. 2001;380:79–93.CrossRefGoogle Scholar
  3. 3.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ. Nonexponential relaxations in strong and fragile glass formers. J Chem Phys. 1993;99(5):4201–9.CrossRefGoogle Scholar
  4. 4.
    Duvvuri K, Richert R. Binary glass-forming materials: mixtures of sorbitol and glycerol. J Phys Chem B. 2004;108(29):10451–6.CrossRefGoogle Scholar
  5. 5.
    Wang LM, Tian Y, Liu R, Richert R. Calorimetric versus kinetic glass transition in viscous monohydroxy alcohols. J Chem Phys. 2008;128(8):084503.CrossRefGoogle Scholar
  6. 6.
    Köhler M, Lunkenheimer P, Goncharov Y, When R, Loidl A. Glassy dynamics in mono-, di-, and tri-propylene glycol: from the α- to the fast β-relaxation. J Non-Cryst Solids. 2010;356(11–17):529–34.CrossRefGoogle Scholar
  7. 7.
    Zhang C, Hu L, Yue Y, Mauro JC. Fragile-to-strong transition in metallic glass-forming liquids. J Chem Phys. 2010;133(1):014508.CrossRefGoogle Scholar
  8. 8.
    Wang LM, Velikov V, Angell CA. Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys. 2002;117(22):10184–92.CrossRefGoogle Scholar
  9. 9.
    Zhu D, Ray CS, Zhou W, Day DE. Glass transition and fragility of Na2O–TeO2 glasses. Non-Cryst Solids. 2003;319:247–56.CrossRefGoogle Scholar
  10. 10.
    Huang D, McKenna GB. New insights into the fragility dilemma in liquids. J Chem Phys. 2001;114(13):5621–30.CrossRefGoogle Scholar
  11. 11.
    Sakka S, Mackenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145–62.CrossRefGoogle Scholar
  12. 12.
    Takeda K, Oguni M, Suga H. Thermo-analytical study of vapor-deposited n-alkanes. J Phys Chem Solids. 1991;52:991–7.CrossRefGoogle Scholar
  13. 13.
    Wang LM, Angell CA, Richert R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J Chem Phys. 2006;125(7):074505.CrossRefGoogle Scholar
  14. 14.
    Wang LM, Mauro JC. An upper limit to kinetic fragility in glass-forming liquids. J Chem Phys. 2011;134(4):044522.CrossRefGoogle Scholar
  15. 15.
    Roland CM, Santangelo PG, Ngai KL. The application of the energy landscape model to polymers. J Chem Phys. 1999;111(12):5593–8.CrossRefGoogle Scholar
  16. 16.
    Senkov ON, Miracle DB. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids. J Chem Phys. 2008;128(12):124508.CrossRefGoogle Scholar
  17. 17.
    Simionesco CA, Fan J, Angell CA. Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions. J Chem Phys. 1999;110(11):5262–72.CrossRefGoogle Scholar
  18. 18.
    Wang LM, Tian Y, Liu R, Richert R. Structural relaxation dynamics in binary glass-forming molecular liquids with ideal and complex mixing behavior. J Phys Chem B. 2010;114(10):3618–22.CrossRefGoogle Scholar
  19. 19.
    Gong H, Sun M, Li Z, Liu R, Tian Y, Wang LM. Kinetic fragility of binary and ternary glass forming liquid mixtures. Eur Phys J E. 2011;34:86.CrossRefGoogle Scholar
  20. 20.
    Takeda K, Murata K, Yamashita S. Thermodynamic study of the glass transition in polyamine–polyalcohol mixtures: entropy–theoretical interpretation of anomalous glass transition behavior. J Phys Chem B. 1999;103(17):3457–60.CrossRefGoogle Scholar
  21. 21.
    Terashima Y, Takeda K, Honda M. Phase behaviour and molecular dynamics in the binary system of sodium perchlorate and 1,2-propanediamine. J Chem Thermodyn. 2011;43(3):307–10.CrossRefGoogle Scholar
  22. 22.
    Terashima Y, Takeda K, Honda M. Hydrogen-bonding structures and glass transitions in 1,2-propanediamine mixed with inorganic salts. J Mol Struct. 2011;1001:83–8.CrossRefGoogle Scholar
  23. 23.
    Takeda K, Kubochi I, Fukunaka Y, Kinoshita N, Terashima Y, Honda M. Solvation and glass transition in supercooled organic solutions of alkaline perchlorate and alkaline tetrafluoroborate. AIP Conf Proc. 2013;1518:280–3.CrossRefGoogle Scholar
  24. 24.
    Terashima Y, Takeda K, Honda M. Raman and density functional theory studies of solvation structure and ion association of NaClO4 in 1,2-propanediamine. Chem Phys. 2014;430:23–8.CrossRefGoogle Scholar
  25. 25.
    Terashima Y, Mori M, Sugimoto N, Takeda K. Fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4. Chem Phys Lett. 2014;600:46–50.CrossRefGoogle Scholar
  26. 26.
    Terashima Y, Mori M, Takeda K. Fragility and glass transition for binary mixtures of 1,2-propanediamine and NaClO4. J Them Anal Calorim. 2016;123(3):1777–85.CrossRefGoogle Scholar
  27. 27.
    Terashima Y. Difference in variation of glass transition activation energy between 1,2-propanediamine and 1,2-propanediol. Chem Phys Lett. 2016;651:72–5.CrossRefGoogle Scholar
  28. 28.
    Terashima Y, Takeda K. Effects of adding LiBF4 on the glass-transition kinetics of 1,2-propanediol. Chem Phys. 2017;497:17–23.CrossRefGoogle Scholar
  29. 29.
    Yamamura Y, Suzuki Y, Sumita M, Saito K. Calorimetric study of glass transition in molecular liquids consisting of globular associates: dicyclorohexylmethanol and tricyclohexylmethanol. J Phys Chem B. 2012;116(13):3938–43.CrossRefGoogle Scholar
  30. 30.
    Moynihan CT, Lee SK, Tatsumisago M, Minami T. Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta. 1996;280(281):153–62.CrossRefGoogle Scholar
  31. 31.
    Walrafen GE. Raman spectral studies of HDO in H2O. J Chem Phys. 1968;48(1):244–51.CrossRefGoogle Scholar
  32. 32.
    Scherer JR, Go MK, Kint S. Raman spectra and structure of water from −10 to 90. J Phys Chem. 1974;78(13):1304–13.CrossRefGoogle Scholar
  33. 33.
    Walrafen GE. Raman spectral studies of the effects of perchlorate ion on water structure. J Chem Phys. 1970;52(8):4176–98.CrossRefGoogle Scholar
  34. 34.
    Kobayashi M, Tanaka H. Relationship between the phase diagram, the glass-forming ability, and the fragility of a water/salt mixture. J Phys Chem B. 2011;115(48):14077–90.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Yukio Terashima
    • 1
  • Naoyuki Sugimoto
    • 1
  • Manami Mori
    • 1
  • Norikazu Kinoshita
    • 1
  • Kiyoshi Takeda
    • 1
  1. 1.Naruto University of EducationNarutoJapan

Personalised recommendations