Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 1, pp 749–756 | Cite as

Kinetics of heterogeneous-induced degradation for artesunate and artemether

  • Denisa Circioban
  • Ionuţ Ledeţi
  • Gabriela Vlase
  • Adriana Ledeţi
  • Carmen Axente
  • Titus Vlase
  • Cristina Dehelean


This paper presents the results obtained after the investigation of two artemisinin derived sesquiterpenes, namely artesunate and artemether, currently studied for their antitumor properties. The chosen methods of analysis included UATR–FTIR spectroscopy, characterization of the thermal behavior (TG/DTG/HF) in oxidative dynamic atmosphere, and a complete kinetic analysis. The latter was realized using two integral methods (Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa), a differential one (Friedman), and was later completed with the modified NPK method. The study showed that both compounds show similar thermal stability in terms of apparent activation energies and the degradation processes occur in two parallel steps for each compound, this being solely due to chemical transformations.


Sesquiterpene Isoconversional kinetic study Artesunate Artemether NPK method 







Conversion degree


The differential conversion function


The universal gas constant


The integral conversion function


The heating rate


The temperature dependence function


The pre-exponential factor


The apparent activation energy given by the Arrhenius equation


  1. 1.
    Brunton LL, Lazo JS, Parker K, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.Google Scholar
  2. 2.
    Aftab T. Artemisia annua—pharmacology and biotechnology (2016).
  3. 3.
    Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014;142(1):126–39.CrossRefGoogle Scholar
  4. 4.
    World Heath Organisation. The international pharmacopoeia. 6th ed. Geneva: World Heath Organisation; 2006.Google Scholar
  5. 5.
    Luo X-D, Yeh HJC, Brossi A, Flippen-Anderson JL, Gillardi R. The chemistry of drugs part IV, configurations of antimalarials derived from qinghaosu: dihydroqingyhaosu, artemether, and artesunic acid. Helv Chim Acta. 1984;67(6):1515–22.CrossRefGoogle Scholar
  6. 6.
    Butcher RJ, Jasinski JP, Yathirajan HS, Bindya S, Narayana B. α-Artemether. Acta Crystallogr Sect E: Struct Rep Online. 2007;63(7):o3291–2.CrossRefGoogle Scholar
  7. 7.
    Wang Z, Chen J, Li L, Zhou Z, Geng Y, Sun T. Detailed structural study of β-artemether: density functional theory (DFT) calculations of infrared, Raman spectroscopy, and vibrational circular dichroism. J Mol Struct. 2015;1097(71963):61–8.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Lisgarten J, Potter B, Palmer R, Chimanuka B, Aymami J. Structure, absolute configuration, and conformation of the antimalarial drug artesunate. J Chem Crystallogr. 2002;32(1–2):43–8.CrossRefGoogle Scholar
  10. 10.
    Crespo-Ortiz MP, Wei MQ. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012;2012:1–18.CrossRefGoogle Scholar
  11. 11.
    Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18(4):767–73.Google Scholar
  12. 12.
    Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch M-E, Volm M, Tew KD, Ross DD, Funk JO. Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol. 2003;64(2):382–94.CrossRefGoogle Scholar
  13. 13.
    Gabriëls M, Plaizier-Vercammen JA. Densitometric thin-layer chromatographic determination of artemisinin and its lipophilic derivatives, artemether and arteether. J Chromatogr Sci. 2003;41(7):359–66.CrossRefGoogle Scholar
  14. 14.
    Farsam V, Hassan ZM, Zavaran-Hosseini A, Noori S, Mahdavi M, Ranjbar M. Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4 + CD25 + FoxP3 + T reg cells in vivo. Int Immunopharmacol. 2011;11(11):1802–8.CrossRefGoogle Scholar
  15. 15.
    Raica M, Cimpean AM, Popovici RA, Balica AR, Vladau M, Gaje PN. Mast cells stimulate lymphangiogenesis in the gingiva of patients with periodontal disease. Vivo. 2015;29(1):29–34.Google Scholar
  16. 16.
    Podariu AC, Popovici AR, Rosianu RS, Oancea R. Comparative study on nickel and chromium salivary concentration in patients with prosthetic restorations on metallic frame. Rev Chim. 2013;64(9):971–3.Google Scholar
  17. 17.
    Dai Y-FF, Zhou W-WW, Meng J, Du X-LL, Sui Y-PP, Dai L, Wang P-QQ, Huo H-RR, Sui F. The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res. 2017;26(5):867–80.CrossRefGoogle Scholar
  18. 18.
    Popovici AR, Vlase G, Vlase T, Suta LM, Popoiu C, Ledeti I, Iovanescu G, Fulias A. Local anesthetic agents: III. Study of solid dosage forms with pharmaceutical excipients. Rev Chim. 2015;66(7):1046–51.Google Scholar
  19. 19.
    Motoc O, Popovici R, Onisei D, Podariu AC. Toxicological activity of some compounds with application on dentistry field experimental study. Rev Chim. 2015;66(7):1024–6.Google Scholar
  20. 20.
    Oliva A, Llabrés M, Fariña JB. Data analysis of kinetic modelling used in drug stability studies: isothermal versus nonisothermal assays. Pharm Res. 2006;23(11):2595–602.CrossRefGoogle Scholar
  21. 21.
    Chavan RB, Shastri NR. Polymorphic transformation as a result of atovaquone incompatibility with selected excipients. J Therm Anal Calorim. 2017;131(3):1–11.Google Scholar
  22. 22.
    De Lima Gomes EC, Ercole de Carvalho I, Fialho SL, Barbosa J, Yoshida MI, da Silva Cunha Júnior A. Mixing method influence on compatibility and polymorphism studies by DSC and statistical analysis. J Therm Anal Calorim. 2018;131(3):2123–8.CrossRefGoogle Scholar
  23. 23.
    Veiga A, Oliveira PR, Bernardi LS, Mendes C, Silva MAS, Sangoi MS, Janissek PR, Murakami FS. Solid-state compatibility studies of a drug without melting point. J Therm Anal Calorim. 2018;131(3):3201–9.CrossRefGoogle Scholar
  24. 24.
    Wang X, You J. Study on the thermal decomposition of sofosbuvir. J Anal Appl Pyrolysis. 2017;123(2):376–84.CrossRefGoogle Scholar
  25. 25.
    Sun Y, Ren H, Jiao Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim. 2018;131(1):101–11.CrossRefGoogle Scholar
  26. 26.
    De Souza SMM, Leles MIG, Da Conceição EC. Evaluation of thermal stability of enalapril maleate tablets using thermogravimetry and differential scanning calorimetry. J Therm Anal Calorim. 2016;123(3):1943–9.CrossRefGoogle Scholar
  27. 27.
    Ledeti I, Bolintineanu S, Vlase G, Circioban D, Dehelean C, Suta LM, Caunii A, Ledeti A, Vlase T, Murariu M. Evaluation of solid-state thermal stability of donepezil in binary mixtures with excipients using instrumental techniques. J Therm Anal Calorim. 2017;130(1):425–31.CrossRefGoogle Scholar
  28. 28.
    Ledeti A, Vlase G, Vlase T, Circioban D, Dehelean C, Ledeti I. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim. 2016;131:155–65.CrossRefGoogle Scholar
  29. 29.
    Ledeti A, Vlase G, Ledeti I, Vlase T, Matusz P, Dehelean C, Circioban D, Stelea L, Suta LM. Thermal stability of desipramine and imipramine. Rev Chim. 2016;67(2):336–8.Google Scholar
  30. 30.
    Shah PP, Mashru RC. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm Dev Technol. 2010;15(3):276–85.CrossRefGoogle Scholar
  31. 31.
    Ansari MT, Karim S, Ranjha NM, Shah NH, Muhammad S. Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch Pharm Res. 2010;33(6):901–10.CrossRefGoogle Scholar
  32. 32.
    Mahgoub RA, Awad MH, Elkhidr HE. Establishment of simple colorimetric method of analysis artesunate in tablets. IOSR J Pharm Biol Sci Ver I. 2015;10(5):2319–7676.Google Scholar
  33. 33.
    Ansari MT, Hussain A, Nadeem S, Majeed H, Saeed-Ul-Hassan S, Tariq I, Mahmood Q, Khan AK, Murtaza G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. Biomed Res Int. 2015. Scholar
  34. 34.
    Pawar JN, Shete RT, Gangurde AB, Moravkar KK, Javeer SD, Jaiswar DR, Amin PD. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: physicochemical and in silico studies. Asian J Pharm Sci. 2016;11(3):385–95.CrossRefGoogle Scholar
  35. 35.
    Drugbank profile of artemether. Accessed 20 Nov 2017.
  36. 36.
    Drugbank profile of artesunate. Accessed 20 Nov 2017.
  37. 37.
    Ledeţi I, Murariu M, Vlase G, Vlase T, Doca N, Ledeţi A, Şuta L-M, Olariu T. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim. 2017;127(1):565–70.CrossRefGoogle Scholar
  38. 38.
    Ledeti I, Vlase G, Vlase T, Murariu M, Trandafirescu C, Soica C, Suta LM, Dehelean C, Ledeti A. Non-isothermal isoconversional kinetic study regarding the degradation of albendazole. Rev Chim. 2016;67(3):549–52.Google Scholar
  39. 39.
    Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.Google Scholar
  40. 40.
    Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu M. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164.CrossRefGoogle Scholar
  41. 41.
    Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data. Thermochim Acta. 1998;316(1):37–45.CrossRefGoogle Scholar
  42. 42.
    Sempere J, Nomen R, Serra R, Soravilla J. The NPK method. Thermochim Acta. 2002;388(1–2):407–14.CrossRefGoogle Scholar
  43. 43.
    Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88(3):631–5.CrossRefGoogle Scholar
  44. 44.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  45. 45.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.CrossRefGoogle Scholar
  46. 46.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  47. 47.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  48. 48.
    Akahira T, Sunose T. Research report, trans joint convention of four electrical institutes. Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  49. 49.
    Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B Polym Lett. 1969;7(1):41–6.CrossRefGoogle Scholar
  50. 50.
    Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56(2):843–9.CrossRefGoogle Scholar
  51. 51.
    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Denisa Circioban
    • 1
  • Ionuţ Ledeţi
    • 2
  • Gabriela Vlase
    • 3
  • Adriana Ledeţi
    • 2
  • Carmen Axente
    • 2
  • Titus Vlase
    • 3
  • Cristina Dehelean
    • 1
    • 2
  1. 1.Faculty of PharmacyUniversity of Medicine and Pharmacy Tirgu MuresTârgu MureşRomania
  2. 2.Faculty of PharmacyUniversity of Medicine and Pharmacy “Victor Babeş”TimişoaraRomania
  3. 3.Research Centre for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimişoaraRomania

Personalised recommendations