Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 1, pp 261–267 | Cite as

Thermogravimetric and X-ray diffraction investigation on carbonated lanthanum oxide and lanthanum hydroxide formed in humid CO2 atmosphere

  • Elena Haibel
  • Stefan Berendts
  • Dirk Walter


Lanthanum oxide compounds are of great interest because of their wide range of applications (e.g., heterogeneous catalysis). It is well known that lanthanum oxide compounds, like lanthanum oxide, have to be handled carefully in a humid atmosphere due to their hydration affinity. Furthermore, lanthanum hydroxide has a high CO2 affinity and partially forms basic carbonates. The amount of carbonate impurities that are formed in air remains nearly constant over a long time. To investigate the carbonation process in more detail, lanthanum hydroxide and lanthanum oxide were stored in a controlled humid CO2 atmosphere. The results of thermal analysis (TA) and X-ray diffraction (XRD) prove a transformation of lanthanum hydroxide as well as lanthanum oxide to lanthanum carbonate via lanthanum hydroxide carbonate.


Lanthanum hydroxide Lanthanum oxide Carbonation process TG TG–IR XRD 



We would like to thank Dr. Carolin Fischer, NETZSCH-Gerätebau, for the TG–FTIR analysis.


  1. 1.
    Valange S, Beauchaud A, Barrault J, Gabelica Z, Daturi Z, Can F. Lanthanum oxides for the selective synthesis of phytosterol esters: correlation between catalytic and acid-base properties. J Catal. 2007;251:113–22.CrossRefGoogle Scholar
  2. 2.
    Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu DY, Yang S. Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J Ind Eng Chem. 2015;31:385–92.CrossRefGoogle Scholar
  3. 3.
    Lin CH, Campbell D, Wang JX, Lunsford H. Oxidative dimerization of methane over lanthanum oxide. J Phys Chem. 1986;90:534–7.CrossRefGoogle Scholar
  4. 4.
    Campbell KD, Zhang H, Lunsford JH. Methane activation by the lanthanide oxides. J Phys Chem. 1988;92:750–3.CrossRefGoogle Scholar
  5. 5.
    Bernal S, Martin GA, Moral O, Perricho V. Oxidative dehydrogenation of ethane over lanthana: actual nature of the active phase. Catal Lett. 1990;6:231–8.CrossRefGoogle Scholar
  6. 6.
    Chen H, Yu H, Peng F, Wang H, Yang J, Pan M. Efficient and stable oxidative stream reforming of ethanol for hydrogen production: effect of in situ dispersion of Ir over Ir/La2O3. J Catal. 2010;269:281–90.CrossRefGoogle Scholar
  7. 7.
    Wang F, Ta N, Li Y, Shen W. La(OH)3 and La2O2CO3 nanorod catalysts for Claisen-Schmidt condensation. Chin J Catal. 2014;35:437–43.CrossRefGoogle Scholar
  8. 8.
    Gao J, Hou Z, Guo J, Zhu Y, Zheng X. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor. Catal Today. 2008;131:278–84.CrossRefGoogle Scholar
  9. 9.
    Huang SJ, Walters AB, Vannice MA. Adsorption and decomposition of NO on lanthanum oxide. J Catal. 2000;192:29–47.CrossRefGoogle Scholar
  10. 10.
    Wang F, Lu G. High performance rare earth oxides LnOx (Ln = La, Ce, Nd, Sm and Dy)-modified Pf/SiO2 catalysts for CO oxidation in the presence of H2. J Powder Sour. 2008;181:120–6.CrossRefGoogle Scholar
  11. 11.
    Haensch A, Borowski D, Barsan N, Koziej D, Niederberger M, Weimer U. Faster response times of rare-earth oxycarbonate based CO2 sensors and another readout strategy for real-world applications. Proc Eng. 2011;25:1429–32.CrossRefGoogle Scholar
  12. 12.
    Tang L, Li Y, Xu K, Hou X, Lv Y. Sensitive and selective acetone sensor based in its cataluminescence from nano-La2O3 surface. Sens Actuator B. 2008;132:243–9.CrossRefGoogle Scholar
  13. 13.
    Koyabu K, Masui T, Tamura S, Imanaka N. Synthesis of new phosphor based on rare earth oxycarbonate. J Alloys Compd. 2006;408–412:867–70.CrossRefGoogle Scholar
  14. 14.
    Wang S, Wang W, Qian Y. Preparation of La2O3 thin films by pulse ultrasonic spray pyrolysis method. Thin Solid Films. 2000;372:50–3.CrossRefGoogle Scholar
  15. 15.
    Laiho R, Lähderanta E, Säisä L, Kovács G, Zsolt G, Kirscher I, Halász I. Optically induced changes in the magnetic properties of the ceramic superconductor La1.8Ba0.2CuO4. Phys Rev B. 1990;42:347–53.CrossRefGoogle Scholar
  16. 16.
    Normand B, Rice TM. Dynamical properties of an antiferromagnet near the quantum critical point: application to LaCuO2.5. Phys Rev B. 1997;56:8760–73.CrossRefGoogle Scholar
  17. 17.
    Béchade E, Julien I, Iwata T, Masson O, Thomas P, Champion E, Fukuda K. Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte. J Eur Ceram Soc. 2008;28:2717–24.CrossRefGoogle Scholar
  18. 18.
    Imanaka N, Okamoto K, Adachi G. Water-insoluble lanthanum oxychloride-based solid electrolytes with ultra-high chloride ion conductivity. Angew Chem Int Ed. 2002;41:3890–2.CrossRefGoogle Scholar
  19. 19.
    Xu Y, Peng Y, Zheng X, Dearn KD, Xu H. Synthesis and tribological studies of nanoparticle additives for pyrolysis bio-oil formulated as a diesel fuel. Energy. 2015;83:80–8.CrossRefGoogle Scholar
  20. 20.
    Mazloumi M, Zanganeh S, Kajbafvala A, Shayegh MR, Sadrnezhaad SK. Formation of lanthanum hydroxide nanostructures: effect of NaOH and KOH solvents. Int J Eng Trans B. 2008;21:169–76.Google Scholar
  21. 21.
    Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem Int Ed. 2002;4:4790–3.CrossRefGoogle Scholar
  22. 22.
    Méndez M, Carvajal JJ, Marsal LF, Salagre P, Aguiló M, Díaz F, Formentín P, Pallarès J, Cesteros Y. Effect of the La(OH)3 preparation method on the surface and rehydroxylation properties of resulting La2O3. J Nanopart Res. 2013;15:1479.CrossRefGoogle Scholar
  23. 23.
    Li SCH, Du N, Fan JN, Xu LJ, Xu J. Low-temperature chemical solution synthesis of dendrite-like La(OH)3 nanostructures and their thermal conversion to La2O3 nanostructures. Rare Met. 2015;34:395–9.CrossRefGoogle Scholar
  24. 24.
    Salavati-Niasari M, Hosseinzadeh G, Davar F. Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. J Alloys Compd. 2011;509:134–40.CrossRefGoogle Scholar
  25. 25.
    Zhu J, Gui Z, Ding Y. A simple rout to lanthanum hydroxide nanorods. Mater Lett. 2008;62:2373–6.CrossRefGoogle Scholar
  26. 26.
    Ozawa M, Onoe R, Kato H. Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J Alloys Compd. 2006;408–412:556–9.CrossRefGoogle Scholar
  27. 27.
    Mu Q, Chen T, Wang Y. Synthesis, characterization and photoluminescence of lanthanum hydroxide nanorods by a simple route at room temperature. Nanotechnology. 2009;20:345602.CrossRefGoogle Scholar
  28. 28.
    Leidinger P, Popescu R, Gerthsen D, Feldmann C. Nanoscale La(OH)3 hallow spheres and fine-tuning of its outer diameter and cavity size. Small. 2010;6:1886–91.CrossRefGoogle Scholar
  29. 29.
    Zheng D, Shi J, Lu X, Wang C, Liu Z, Liang C, Liu P, Tong Y. Controllable growth of La(OH)3 nanorod and nanotube arrays. Cryst Eng Comm. 2010;12:4066–70.CrossRefGoogle Scholar
  30. 30.
    Füglein E, Walter D. Thermal analysis of lanthanum hydroxide. J Therm Anal Calorim. 2012;110:199–202.CrossRefGoogle Scholar
  31. 31.
    Neumann A, Walter D. The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochim Acta. 2006;445:200–4.CrossRefGoogle Scholar
  32. 32.
    Bernal S, Díaz JA, García R, Rodríguez-Izquierdo JM. Study of some aspects of the reactivity of La2O3 with CO2 and H2O. J Mat Sci. 1985;20:537–41.CrossRefGoogle Scholar
  33. 33.
    Bernal S, Botana FJ, García R, Ramírez F, Rodríguez-Izquierdo JM. Solid state chemistry of the preparation of lanthana-supported metal catalyst—study of the impregnation step. J Mat Sci. 1987;22:3793–800.CrossRefGoogle Scholar
  34. 34.
    Hubbard CR, Evans EH, Smith DK. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J Apll Cryst. 1976;9:169–74.CrossRefGoogle Scholar
  35. 35.
    Alvero R, Odriozola JA, Trillo JM, Bernal S. Lanthanide oxides: preparation and ageing. J Chem Soc Dalton Trans. 1984(1);87–91.Google Scholar
  36. 36.
    Bernal S, Blanco G, Calvino JJ, Pérez Omil JA, Pintado JM. Some major aspects of the chemical behavior of rare earth oxides: an overview. J Alloys Compd. 2006;408–412:496–502.CrossRefGoogle Scholar
  37. 37.
    Nikulshina V, Gálvez ME, Steinfeld A. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chem Eng J. 2007;129:75–83.CrossRefGoogle Scholar
  38. 38.
    Shih SM, Ho CS, Song YS, Lin JP. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind Eng Chem Res. 1999;38:1316–22.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Gefahrstofflaboratorien Chemie und Physik am Institut für ArbeitsmedizinJustus-Liebig-UniversitätGiessenGermany
  2. 2.Institut für Anorganische und Analytische ChemieJustus-Liebig-UniversitätGiessenGermany
  3. 3.Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations