Skip to main content
Log in

Standard molar enthalpies of formation for crystalline vanillic acid, methyl vanillate and acetovanillone by bomb calorimetry method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The massic energies of combustion for three crystalline monosubstituted guaiacols such as vanillic acid, methyl vanillate and acetovanillone were determined by using bomb calorimeter method and were found to be − (21,070.3 ± 8.6), − (23,352.3 ± 7.4) and − (26,732.2 ± 5.2) J g−1, respectively. The standard molar enthalpy of combustion and standard molar enthalpy of formation in the crystalline state at 298.15 K were calculated. They are − (3542.9 ± 1.5) and − (748.5 ± 1.8) kJ mol−1 for vanillic acid, − (4255.4 ± 1.7) and − (715.3 ± 2.1) kJ mol−1 for methyl vanillate, − (4444.7 ± 0.9) and − (526.1 ± 1.5) kJ mol−1 for acetovanillone, respectively. The basic contribution in a value of standard molar enthalpy of formation for oxygen-containing aromatic compounds provides the replacement of the hydrogen atom in the benzene ring to the oxygen-containing group. The calculation of these contributions gives the following values for the crystalline state at 298.15 K for substituents CHO − (150 ± 6), COCH3 − (201 ± 4), COOCH3 − (392 ± 6) and COOH − (428 ± 4) kJ mol−1. The differences in contributions for crystalline and gaseous states were estimated for groups CHO, COOCH3, COCH3 − (26 ± 3) kJ mol−1 in monosubstitute benzene derivatives, 4-substituted anisoles and guaiacols, − (35 ± 4) kJ mol−1 in 4-substituted phenols and for group COOH − (50 ± 3) kJ mol−1 in all abovementioned groups of compounds. More higher differences in contributions found for 4-substituted phenols and benzenecarboxylic acids are attributed to the hydrogen bonds formation in crystalline state of these derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xu C, Ferdosian F. Conversion of lignin into bio-based chemicals and materials. Green chemistry and sustainable technology. Berlin: Springer; 2017.

    Google Scholar 

  2. Prakash A, Singh R, Balagurumurthy B, Bhaskar T, Arora AK, Puri SK. Thermochemical valorization of lignin. In: Pandey A, Bhaskar T, Stöcker M, Sukumaran R, editors. Advances in thermochemical conversion of biomass, chapter 16. New York: Elsevier; 2015. p. 455–78.

    Chapter  Google Scholar 

  3. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110(6):3552–99.

    Article  CAS  Google Scholar 

  4. Fang Z, Jr Smith, Richard L, editors. Production of biofuels and chemicals from lignin. Singapore: Springer; 2016.

    Google Scholar 

  5. Jung KA, Woo SH, Lim S-R, Park JM. Pyrolytic production of phenolic compounds from the lignin residues of bioethanol processes. Chem Eng J. 2015;259:107–16.

    Article  CAS  Google Scholar 

  6. Peng C, Zhang G, Yue J, Xu G. Pyrolysis of lignin for phenols with alkaline additive. Fuel Process Technol. 2014;124:212–21.

    Article  CAS  Google Scholar 

  7. Lou R, Wu S, Lyu G. Quantified monophenols in the bio-oil derived from lignin fast pyrolysis. J Anal Appl Pyrol. 2015;111(1):27–32.

    Article  CAS  Google Scholar 

  8. Kang S, Li X, Fan J, Chang J. Hydrothermal conversion of lignin: a review. Renew Sustain Energy Rev. 2013;27(11):546–58.

    Article  CAS  Google Scholar 

  9. Ponomarenko J, Dizhbite T, Lauberts M, Volperts A, Telysheva G. Analytical pyrolysis—a tool for revealing of lignin structure-antioxidant activity relationship. J Anal Appl Pyrol. 2015;113(5):360–9.

    Article  CAS  Google Scholar 

  10. Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016;42:40–53.

    Article  CAS  Google Scholar 

  11. Feofilova EP, Mysyakina IS. Lignin: chemical structure, biodegradation, and practical application (a review). Appl Biochem Microbiol. 2016;52(6):573–81.

    Article  CAS  Google Scholar 

  12. Cheng F, Brewer CE. Producing jet fuel from biomass lignin: potential pathways to alkyl-benzenes and cycloalkanes. Renew Sustain Energy Rev. 2017;72(5):673–722.

    Article  CAS  Google Scholar 

  13. Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev. 2016;116(4):2275–306.

    Article  CAS  Google Scholar 

  14. Naseem A, Tabasum S, Zia KM, Zuber M, Noree A. Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol Part A. 2016;93(12):296–313.

    Article  CAS  Google Scholar 

  15. Azadi P, Inderwildi OR, Farnood R, King DA. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev. 2013;21:506–23.

    Article  CAS  Google Scholar 

  16. Bajpai P. Value-Added Products from Lignin. In: Bajpai P, editor. Biotechnology for pulp and paper processing. Singapore: Springer; 2018. p. 561–71.

    Chapter  Google Scholar 

  17. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev. 2015;49(6):871–906.

    Article  CAS  Google Scholar 

  18. Ribeiro da Silva MDMC, Gonçalves MV, Monte MJS. Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. J Chem Thermodyn. 2010;42(4):472–7.

    Article  CAS  Google Scholar 

  19. Pinto SS, Diogo HP, Guedes RC, Costa Cabral BJ, Minas da Piedade ME, Martinho Simões JA. Energetics of hydroxybenzoic acids and of the corresponding carboxyphenoxyl radicals. Intramolecular hydrogen bonding in 2-hydroxybenzoic acid. J Phys Chem A. 2005;109(42):9700–8.

    Article  CAS  Google Scholar 

  20. Almeida ARRP, Cunha AFG, Matos MAR, Morais VMF, Monte MJS. Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids. J Chem Thermodyn. 2014;78(11):43–57.

    Article  CAS  Google Scholar 

  21. Bernardes CES, Piedade MFM, Minas da Piedade ME. Polymorphism in 4′-hydroxyacetophenone: structure and energetics. Cryst Growth Des. 2008;8(7):2419–30.

    Article  CAS  Google Scholar 

  22. Dávalos JZ, Herrero R, Chana A, Guerrero A, Jiménez P, Santiuste JM. Energetics and structural properties, in the gas phase, of trans-hydroxycinnamic acids. J Phys Chem A. 2012;116:2261–7.

    Article  Google Scholar 

  23. Maksimuk Y, Ponomarev D, Sushkova A, Krouk V, Vasarenko I, Antonava Z. Standard molar enthalpy of formation of vanillin. J Therm Anal Calorim. 2018;131:1721–33.

    Article  CAS  Google Scholar 

  24. Freitas VLS, Lima ACMO, Sapei E, Ribeiro da Silva MDMC. Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. J Chem Thermodyn. 2016;102:287–92.

    Article  CAS  Google Scholar 

  25. Emel′yanenko VN, Yermalayeu AV, Voges M, Held C, Sadowski G, Verevkin SP. Thermodynamics of a model biological reaction: a comprehensive combined experimental and theoretical study. Fluid Phase Equilib. 2016;422:99–110.

    Article  Google Scholar 

  26. Zhang G, Wen Y, Liu Z, Zhang S, Li G. Acid-catalyzed hydrolysis of conifer lignosulfonate in black liquor for the production of value-added chemicals. Appl Catal A Gen. 2017;542(7):1–9.

    CAS  Google Scholar 

  27. Zhao W, Simmons B, Singh S, Ragauskas A, Cheng G. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem. 2016;18:5693–700.

    Article  CAS  Google Scholar 

  28. Riganti C, Costamagna C, Bosia A, Ghigo D. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol Appl Pharmacol. 2006;212(3):179–87.

    Article  CAS  Google Scholar 

  29. Wang Y, Luo X, Pan H, Huang W, Wang X, Wen H, Shen K, Jin B. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem Toxicol. 2015;83:251–60.

    Article  Google Scholar 

  30. Lin CH, Chou YC, Shiao WF, Wang MW. High temperature, flame-retardant, and transparent epoxy thermosets prepared from an acetovanillone-based hydroxyl poly(ether sulfone) and commercial epoxy resins. Polymer. 2016;97:300–8.

    Article  CAS  Google Scholar 

  31. Li J, Zhang Q, Hu W, Yang X, He H. Stability of phenolic acids and the effect on weed control activity. J Korean Soc Appl Biol Chem. 2015;58(6):919–26.

    Article  CAS  Google Scholar 

  32. Gullón B, Eibes G, Moreira MT, Dávila I, Labidi J, Gullón P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind Crops Prod. 2017;107:105–13.

    Article  Google Scholar 

  33. Noubigh A, Abderrabba M. Solid–liquid phase equilibrium and thermodynamic properties of vanillic acid in different pure solvents. J Mol Liq. 2016;223:261–6.

    Article  CAS  Google Scholar 

  34. Vishnu KV, Chatterjee NS, Ajeeshkumar KK, Lekshmi RGK, Tejpal CS, Mathew S, Ravishankar CN. Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr Polym. 2017;174:540–8.

    Article  CAS  Google Scholar 

  35. Xu B, Xu X, Zhang C, Zhang Y, Wu G, Yan M, Jia M, Xie T, Jia X, Wang P, Lei H. Synthesis and protective effect of new ligustrazine-vanillic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Chem Cent J. 2017;11:20.

    Article  Google Scholar 

  36. Sindhu G, Nishanthi E, Sharmila R. Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: a biochemical and molecular study. Environ Toxicol Pharmacol. 2015;39(1):392–404.

    Article  CAS  Google Scholar 

  37. Singh JCH, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SSB, Diwan PV. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm Biol. 2015;53:630–6.

    Article  CAS  Google Scholar 

  38. Llevot A, Grau E, Carlotti S, Grelier H, Cramail H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun. 2016;37:9–28.

    Article  CAS  Google Scholar 

  39. Slayden SW, Liebman JF. Thermochemistry of phenol and related arenols. In: Rappoport Z, editor. The chemistry of phenols. Chichester: Wiley; 2003. p. 223–58.

    Chapter  Google Scholar 

  40. Bernardes CES, Minas da Piedade ME. Energetics of the O − H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y=H, CH3, CH2CH=CH2, C≡CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds. J Phys Chem A. 2008;112(40):10029–39.

    Article  CAS  Google Scholar 

  41. Alvareda E, Denis PA, Iribarne F, Paulino M. Bond dissociation energies and enthalpies of formation of flavonoids: a G4 and M06-2X investigation. Comput Theor Chem. 2016;1091:18–23.

    Article  CAS  Google Scholar 

  42. Varfolomeev MA, Abaidullina DI, Solomonov BN, Verevkin SP, Emel’yanenko VN. Pairwise substitution effects, inter- and intramolecular hydrogen bonds in methoxyphenols and dimethoxybenzenes. Thermochemistry, calorimetry, and first-principles calculations. J Phys Chem B. 2010;114(49):16503–16.

    Article  CAS  Google Scholar 

  43. Matos MAR, Miranda MS, Morais VMF. Calorimetric and theoretical determination of standard enthalpies of formation of dimethoxy-and trimethoxybenzene isomers. J Phys Chem A. 2000;104(40):9260–5.

    Article  CAS  Google Scholar 

  44. Matos MAR, Miranda MS, Morais VMF. Thermochemical study of the methoxy-and dimethoxyphenol isomers. J Chem Eng Data. 2003;48(3):669–79.

    Article  CAS  Google Scholar 

  45. Verevkin SP, Kozlova SA. Di-hydroxybenzenes: catechol, resorcinol, and hydroquinone: enthalpies of phase transitions revisited. Thermochim Acta. 2008;471(1–2):33–42.

    Article  CAS  Google Scholar 

  46. Verevkin SP, Schick C. Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols. Thermochim Acta. 2004;415(1–2):35–42.

    Article  CAS  Google Scholar 

  47. Ribeiro Da Silva MDMC, Ribeiro Da Silva MAV, Pilcher G. Enthalpies of combustion of the three trihydroxybenzenes and of 3-methoxycatechol and 4-nitrocatechol. J Chem Thermodyn. 1986;18:295–300.

    Article  CAS  Google Scholar 

  48. Hou Y, Hu S, Lindström ME, Li J. Feasibility of monomer aromatic substances as calibration standards for lignin quantitative analyses in pyrolysis-GCMS. J Anal Appl Pyrol. 2013;101:232–7.

    Article  CAS  Google Scholar 

  49. Benson S. Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. 1st ed. New York: Wiley; 1968.

    Google Scholar 

  50. Benson SW, Crickshank FR, Golden DM, Haugen GR, O’Neal HE, Rogers AS, Shaw R, Walsh R. Additivity rules for the estimation of thermochemical properties. Chem Rev. 1969;69(3):279–324.

    Article  CAS  Google Scholar 

  51. Verevkin SP. Improved Benson increments for the estimation of standard enthalpies of formation and enthalpies of vaporization of alkyl ethers, acetals, ketals, and ortho esters. J Chem Eng Data. 2002;47:1071–97.

    Article  CAS  Google Scholar 

  52. Verevkin SP, Emel’yanenko VN, Diky VV, Muzny CD, Chirico RD, Frenkel M. New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. J Phys Chem Ref Data. 2013;42(3):033102-1–-33.

    Article  Google Scholar 

  53. Mó O, Yáñez M, Elguero J, Roux MV, Jiménez P, Dávalos JZ, Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Cabildo P, Claramunt R. Substituent effects on enthalpies of formation: benzene derivatives. J Phys Chem A. 2003;107(3):366–71.

    Article  Google Scholar 

  54. Albahri TA. Method for predicting the standard net heat of combustion for pure hydrocarbons from their molecular structure. Energy Convers Manag. 2013;76:1143–9.

    Article  CAS  Google Scholar 

  55. Wieser ME. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem. 2013;85:1047–78.

    Article  CAS  Google Scholar 

  56. Korchagina EN. Metrological characteristics of K-1 and K-3 reference benzoic acids. Meas Tech. 2001;44:1138–42.

    Article  CAS  Google Scholar 

  57. Hubbard WN, Scott DW, Waddington G. Reduction to standard states (at 25 °C) of bomb calorimetric data for compounds of carbon, hydrogen, oxygen and sulphur. J Phys Chem. 1954;58:152–62.

    Article  CAS  Google Scholar 

  58. Alexandrov YuJ, Oleynic BN, Usvyatseva TR. [Reduction to standard thermodynamic states of heat combustion for C,H,O organic compounds]. Trudy metrologicheskih institutov SSSR. Izd. Standartov: Moscow-Leningrad. 1971;189:155–77 (in Russian).

  59. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;11(Suppl.2):2–65.

    Google Scholar 

  60. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp; 1979.

    Google Scholar 

  61. Gharagheizi F, Mirkhani SA. Mahyari A-RT. Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution based method. Energy Fuels. 2011;25:2651–4.

    Article  CAS  Google Scholar 

  62. Holmes JL, Aubry C. Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 2. C, H, N, O, S, and halogens. J Phys Chem A. 2012;116:7196–209.

    Article  CAS  Google Scholar 

  63. Benson S. Thermochemical kinetics. 2nd ed. New York: Wiley; 1976.

    Google Scholar 

  64. Cohen N, Benson SW. Estimation of heats of formation of organic compounds by additivity methods. Chem Rev. 1993;93:2419–38.

    Article  CAS  Google Scholar 

  65. Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C-H–N–O–S-Halogen compounds at 298.15 K. J Phys Chem Ref Data. 1993;22(4):805–1159.

    Article  CAS  Google Scholar 

  66. Cohen N. Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J Phys Chem Ref Data. 1996;25:1411–81.

    Article  CAS  Google Scholar 

  67. Roux MV, Temprado M, Chickos JS, Nagano Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data. 2008;37(4):1855–996.

    Article  CAS  Google Scholar 

  68. Pedley JB. Thermochemical data of organic compounds. Thermodynamics Research Center (TRC), College Station, Texas: TRC Data Series; 1994.

    Google Scholar 

  69. Simões RG, Agapito F, Diogo HP, Minas da Piedade ME. Enthalpy of formation of anisole: implications for the controversy on the O–H bond dissociation enthalpy in phenol. J Phys Chem A. 2014;118(46):11026–32.

    Article  Google Scholar 

  70. Ambrose D, Connett JE, Green JHS, Hales JL, Head AJ, Martin JF. Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. J Chem Thermodyn. 1975;7:1143–57.

    Article  CAS  Google Scholar 

  71. Colomina M, Latorre C, Perez-Ossorio R. Heats of combustion of five alkyl phenyl ketones. Pure Appl Chem. 1961;2:133–5.

    Article  CAS  Google Scholar 

  72. Steele WV, Chirico RD, Cowell AB, Knipmeyer SE, Nguyen A. Thermodynamic properties and ideal-gas enthalpies of formation for methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol. J Chem Eng Data. 2002;47(4):667–88.

    Article  CAS  Google Scholar 

  73. Amaral LMPF, Morais VMF, Ribeiro da Silva MAV. Standard molar enthalpy of formation of methoxyacetophenone isomers. J Chem Thermodyn. 2014;74(7):22–31.

    Article  CAS  Google Scholar 

  74. Colomina M, Jiménez P, Roux MV, Turrión C. Thermochemical properties of benzoic acid derivatives VII. Enthalpies of combustion and formation of the o-, m-, and p-methoxybenzoic acids. J Chem Thermodyn. 1978;10(7):661–5.

    Article  CAS  Google Scholar 

  75. Verevkin SP, Zaitsau DH, Emeĺyanenko VN, Stepurko EN, Zherikova KV. Benzoic acid derivatives: evaluation of thermochemical properties with complementary experimental and computational methods. Thermochim Acta. 2015;622:18–30.

    Article  CAS  Google Scholar 

  76. Lee M-J, Lien P-J, Huang W-K. Solid-liquid equilibria for binary mixtures containing cresols, ethylenediamine, and anisole. Ind Eng Chem Res. 1994;33(11):2853–8.

    Article  CAS  Google Scholar 

  77. Goates JR, Boerio-Goates J, Goates SR, Ott JB. (Solid + liquid) phase equilibria for (N, N-dimethylacetamide + tetrachloromethane): enthalpies of melting of pure components and enthalpies for formation of molecular addition compounds from phase equilibria. J Chem Thermodyn. 1987;19(1):103–7.

    Article  CAS  Google Scholar 

  78. Sedláková Z, Malijevská I, Rehák K, Vrbka P. Solid–liquid and liquid–liquid equilibrium in the formamide-acetophenone system. Collect Czech Chem Commun. 2006;71(9):1350–8.

    Article  Google Scholar 

  79. Blokhin AV, Paulechka YU, Kabo GJ, Kozyro AA. Thermodynamic properties of methyl esters of benzoic and toluic acids in the condensed state. J Chem Thermodyn. 2002;34(1):29–55.

    Article  CAS  Google Scholar 

  80. Tabernero A, del Valle EMM, Galán MA. An empirical analysis of the solubility of pharmaceuticals in supercritical carbon dioxide using sublimation enthalpies. Ind Eng Chem Res. 2013;52(51):18447–57.

    Article  CAS  Google Scholar 

  81. Khursan SL. Comparative analysis of theoretical methods for the determination of thermochemical parameters of organic compounds. Vestn Bashkirskogo Univ. 2014;19(2):395–402 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Maksimuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimuk, Y., Antonava, Z., Ponomarev, D. et al. Standard molar enthalpies of formation for crystalline vanillic acid, methyl vanillate and acetovanillone by bomb calorimetry method. J Therm Anal Calorim 134, 2127–2136 (2018). https://doi.org/10.1007/s10973-018-7247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7247-2

Keywords

Navigation