Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1379–1385 | Cite as

Hermetic thermal behaviors and specific heat capacities of bis(aminofurazano)furazan and bis(nitrofurazano)furazan

  • Zhi-Cun Feng
  • Ming-Yang Du
  • Lian-Jie Zhai
  • Kang-Zhen Xu
  • Ji-Rong Song
  • Feng-Qi Zhao
Article
  • 52 Downloads

Abstract

Thermal behaviors of bis(aminofurazano)furazan (BAFF) and bis(nitrofurazano)furazan (BNFF) were studied by the differential scanning calorimetry (DSC) method with a special hermetic high-pressure crucible and compared to that with a common standard Al crucible. The exothermic decomposition processes of the two compounds were completely revealed. The extrapolated onset temperature, peak temperature and enthalpy of exothermic decomposition at the heating rate of 10 °C min−1 are 290.2, 313.4 °C and − 2174 J g−1 for BAFF, and 265.8, 305.0 °C and − 2351 J g−1 for BNFF, respectively. The apparent activation energies of the decomposition process for the two compounds are 115.7 and 131.7 kJ mol−1, respectively. The self-accelerating decomposition temperatures and critical temperatures of thermal explosion are 247.5 and 368.7 °C for BAFF, and 249.6 and 268.1 °C for BAFF, respectively. Both BAFF and BNFF present high thermal stability. The specific heat capacities for the two compounds were determined with the micro-DSC method, and the specific heat capacities and molar heat capacities at 298.15 K are 1.0921 J g−1 K−1 and 257.9 J mol−1 K−1 for BAFF, and 1.0419 J g−1 K−1 and 308.5 J mol−1 K−1 for BNFF, respectively.

Keywords

Furazan Volatilization Hermetic thermal behavior Hermetic crucible Specific heat capacity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673178).

References

  1. 1.
    Kinney R, Harwood HJ. The structure of furazan oxides. J Am Chem Soc. 1927;49:514–6.CrossRefGoogle Scholar
  2. 2.
    Olofson RA, Michelman JS. Furazan. J Org Chem. 1965;30:1854–6.CrossRefGoogle Scholar
  3. 3.
    Li ZX, Tang SQ. Review on the synthesis of furoxan derivatives. Chin J Energy Mater. 2006;14(1):77–9.Google Scholar
  4. 4.
    Huang M, Li HZ, Huang YG, Dong HS. Synthesis of diaminoazofurazan and diaminoazoxyfurazan. Energy Mater. 2004;12:91–4.Google Scholar
  5. 5.
    Sheremetev AB. Chemistry of furazans fused to five-membered rings. J Heterocycl Chem. 1995;32:371–5.CrossRefGoogle Scholar
  6. 6.
    Sheremetev AB, Kulgina VO, Aleksandrova NS, Dmitriev DE, Strelenko YA, Lebedev VP, Matyushin YN. Dinitro trifurazans with oxy, azo, and azoxy bridges. Propellant Explos Pyrotech. 1998;23:142–8.CrossRefGoogle Scholar
  7. 7.
    Ivanova OA, Averina EB, Kuznetsova TS, Zefirov NS. Synthesis of new 3,4-disubstituted furazans. Chem Heterocycl Commun. 2000;36:1091–6.CrossRefGoogle Scholar
  8. 8.
    Sheremetev AB, Mantseva EV, Dmitriev DE, Sirovskii FS. Transetherification of difurazanyl ethers as a route to unsymmetrical derivatives of difurazanyl ether. Russ Chem Bull. 2002;111:659–62.CrossRefGoogle Scholar
  9. 9.
    Talawar MB, Sivabalan R, Senthilkumar N, Prabhu G, Asthana SN. Synthesis characterization and thermal studies on furazan and tetrazine-based high energy materials. J Hazard Mater. 2004;113:11–5.CrossRefGoogle Scholar
  10. 10.
    Sheremetev AB, Shamshina YL, Dmitriev DE. Synthesis of 3-alkyl-4-aminofurazans. Russ Chem Bull. 2005;54:1032–6.CrossRefGoogle Scholar
  11. 11.
    Sheremetev AB, Palysaeva NV, Struchkova MI. The first synthesis of 3-nitro-4-((s-tetrazin-3-yl)amino)furazans. Mendeleev Commun. 2010;20:350–3.CrossRefGoogle Scholar
  12. 12.
    Chavez D, Klapötke TM, Parrish D, Piercey D, Stierstorfer GJ. The synthesis and energetic properties of 3,4-bis(2,2,2-trinitroethylamino)furazan (BTNEDAF). Propellant Explos Pyrotech. 2014;39:641–8.CrossRefGoogle Scholar
  13. 13.
    Sheremetev AB, Lyalin BV, Kozeev AM, Palysaeva NV, Struchkova MI, Suponitsky KY. A practical anodic oxidation of aminofurazans to azofurazans: an environmentally friendly Route. RSC Adv. 2015;47:37617–9.CrossRefGoogle Scholar
  14. 14.
    Makhova NN, Ovchinnikov IV, Kulikov AS, Khakimov DV, Molchanova MS, Pivina TS. Diaminofuroxan: synthetic approaches and computer-aided study of thermodynamic stability. Propellant Explos Pyrotech. 2012;37:549–57.CrossRefGoogle Scholar
  15. 15.
    Sheremetev AB, Kulagina VO, Ivanova EA. Zero-hydrogen furazan macrocycles with oxy and azo bridges. J Org Chem. 1996;61:1510–2.CrossRefGoogle Scholar
  16. 16.
    Zelenin AK, Trudell ML, Gilardi RD. Synthesis and structure of dinitroazofurazan. J Heterocycl Chem. 1998;35:151–5.CrossRefGoogle Scholar
  17. 17.
    Pagoria PF. A review of energy materials synthesis. Thermochim Acta. 2002;384:187–8.CrossRefGoogle Scholar
  18. 18.
    Sikder AK, Sikder NA. Review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112:1–15.CrossRefGoogle Scholar
  19. 19.
    Zheng W, Wang JN. Review on 3,4-bisnitrofurazanfruoxan (DNTF). Chin J Energy Mater. 2006;14(6):463–4 (in Chinese).Google Scholar
  20. 20.
    Hu HX, Zhang ZZ, Zhao FQ, Xiao C, Wang QH, Yuan BH. A study on the properties and application of high energy density material 3,4-bisnitrofurazanfruoxan. Acta Amamentarii. 2004;25(2):155–8.Google Scholar
  21. 21.
    Zhou YS, Zhang ZZ, Li JK, Guan XR, Huang XP, Zhou C. Crystal structure of 3,4-bisnitrofurazanfruoxan. Chin J Explos Propell. 2005;28(2):43–4.Google Scholar
  22. 22.
    Wang QH. Properties of DNTF-base melting cast explosives. Chin J Explos Propell. 2003;26(3):57–9.Google Scholar
  23. 23.
    Zhao FQ, Chen P, Hu RZ. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-bisnitrofurazanfruoxan. J Hazard Mater. 2004;113:67–71.CrossRefGoogle Scholar
  24. 24.
    Zhao FQ, Chen P, Luo Y. Study on the composite modified double base propellant containing 3,4-bisnitrofurazanfruoxan. J Propuls Technol. 2004;26(6):570–3.Google Scholar
  25. 25.
    Wang J, Dong HS, Huang YG, Li JS. Studies on the preparation and crystal structure of 3,4-diaminofurazanfruoxan. Acta Chim Sin. 2006;64(2):158–62.Google Scholar
  26. 26.
    Zhang Y, Zhou C, Wang BZ, Zhou YS, Xu KZ, Jia SY, Zhao FQ. Synthesis and characteristics of bis(nitrofurazano)furazan (BNFF), an insensitive material with high energy-density. Propellant Explos Pyrotech. 2014;39:809–14.CrossRefGoogle Scholar
  27. 27.
    Wang XJ, Xu KZ, Sun Q, Wang BZ, Zhou C, Zhao FQ. The insensitive energetic material trifurazano-oxacycloheptatriene (TFO): synthesis and detonation properties. Propellant Explos Pyrotech. 2014;40:9–12.CrossRefGoogle Scholar
  28. 28.
    Kim TK, Choe JH, Lee BW, Chung KH. Synthesis and characterization of BNFF analogues. Bull Korean Chem Soc. 2012;33:2765–8.CrossRefGoogle Scholar
  29. 29.
    Zhao K, Wang HX, Jiang QL, Liu RP. The research on volatility of 3,4-bisnitrofurazanfruoxan. Sci Tech Eng. 2014;14(29):271–3.Google Scholar
  30. 30.
    Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114:1161–6.CrossRefGoogle Scholar
  31. 31.
    Zhong Y, Li X, Gu Z, Wang X, Yang L, Yang X, Zhang Z, Zhong B. Thermal studies on Li(CH3CN)4PF6 and Li(C4H10O2)2PF6 complexes by the TG–DTA–MS and DSC. J Therm Anal Calorim. 2018;131:1287–93.CrossRefGoogle Scholar
  32. 32.
    Muñoz-Sánchez B, Nieto-Maestre J, Imbuluzqueta G, MarañónIñigo I, Iparraguirre-Torres I, García-Romero A. A precise method to measure the specific heat of solar salt-based nanofluids. J Therm Anal Calorim. 2017;129:905–10.CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Wu H, Xu KZ, Zhang WT, Song JR, Zhao FQ, Hu RZ. Thermolysis, non-isothermal decomposition kinetics, specific heat capacity and adiabatic time-to-explosion of (Cu(NH3)4)(DNANT)2 [DNANT = Dinitroacetonitrile). J Phys Chem A. 2014;118:1168–74.CrossRefGoogle Scholar
  34. 34.
    Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al-2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87(2):159–63.CrossRefGoogle Scholar
  35. 35.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–5.CrossRefGoogle Scholar
  36. 36.
    Ozawa TA. Method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  37. 37.
    Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  38. 38.
    Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008 (in Chinese).Google Scholar
  39. 39.
    Xu KZ, Song JR, Zhao FQ, Ma HX, Gao HX, Chang CR, Ren YH, Hu RZ. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158:333–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Zhi-Cun Feng
    • 1
  • Ming-Yang Du
    • 1
  • Lian-Jie Zhai
    • 2
  • Kang-Zhen Xu
    • 1
  • Ji-Rong Song
    • 1
  • Feng-Qi Zhao
    • 2
  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anChina
  2. 2.Xi’an Modern Chemistry Research InstituteXi’anChina

Personalised recommendations