Skip to main content

Synthesis and characterization of copper, nickel, cobalt, zinc complexes with 4-nitro-3-pyrazolecarboxylic acid ligand

Abstract

In the continuation of our systematic research of pyrazole coordination compounds, complexes of Cu(II), Ni(II), Co(II) and Zn(II) with 4-nitro-3-pyrazolecarboxylic acid ligand (L) were synthesized in the reaction of warm ethanolic solutions of the ligand and CuCl2·2H2O, Ni(CH3COO)2, CoCl2·6H2O and Zn(CH3COO)2, mixed in the metal-to-ligand ratio of 1:2. As the compounds could not be obtained in the form suitable for single-crystal structure analysis, their bis(ligand) structures, ML2 (M = CuII, NiII, CoII and ZnII) were proposed on the basis of elemental analysis, IR spectrometry, conductometric and TG–MS measurements. The low conductivity of the compounds additionally supports the deprotonation of the ligand and the formation of neutral complexes. The solvent content was calculated using the thermogravimetric (TG) data. According to TG data, the copper(II) compound crystallizes with 8 while nickel(II) complex with 4 water molecules, CuL2·8H2O, NiL2·4H2O. Complexes of Co(II) and Zn(II) contain 1 and 1.5 water molecules. Despite the differences in solvation properties, the high similarity in the course of the decomposition refers to the similar coordination mode of the organic ligand. The crystal and molecular structures of HL·H2O and NH4[LHL] were determined by single-crystal X-ray structure analysis. Biological research based on determining the inhibition effect of commercial fungicide Cabrio top, ligand, and all newly synthesized complexes on Ph. viticola has been carried out using the phytosanitary method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jaćimović ŽK, Giester G, Kosović M, Bogdanović GA, Novaković SB, Leovac VM, Latinović N, Barta Holló B, Mészáros Szécsényi K. Pyrazole-type complexes with Ni(II) and Cu(II). Solvent exchange reactions in coordination compounds. J Therm Anal Calorim. 2017;127(2):1501–9.

    Article  CAS  Google Scholar 

  2. Ivanenkov YA, Balakin KV, Tkachenko SE. New approaches to the treatment of inflammatory disease: focus on small-molecule inhibitors of signal transduction pathways. Drugs R&D. 2008;9:397–434.

    Article  CAS  Google Scholar 

  3. Graneto MJ, Kurumbail RG, Vazquez ML, Shieh HS, Pawlitz JL, Williams JM, Stallings WC, Geng L, Naraian AS, Koszyk FJ, Stealey MA, Xu XD, Weier RM, Hanson GJ, Mourey RJ, Compton RP, Mnich SJ, Anderson GD, Monahan JB, Devraj R. Synthesis, crystal structure, and activity of pyrazole-based inhibitors of p38 kinase. J Med Chem. 2007;50:5712–9.

    Article  CAS  PubMed  Google Scholar 

  4. Almeida da Silva PE, Ramosa DF, Bonacorso HG, Iglesia AI, Oliveira MR, Coelho T, Navarini J, Morbidoni HR, Zanatta N, Martins MAP. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int J Antimicrob Agents. 2008;32:139–44.

    Article  CAS  PubMed  Google Scholar 

  5. Reisner E, Arion VB, Keppler BK, Pombeiro AJL. Electron-transfer activated metal-based anticancer drugs. Inorg Chim Acta. 2008;361:1569–83.

    Article  CAS  Google Scholar 

  6. Pruchnik FP, Jakimowicz P, Ciunik Z, Zakrzewska-Czerwińska J, Opolski A, Wietrzyk J, Wojdat E. Rhodium(III) complexes with polypyridyls and pyrazole and their antitumor activity. Inorg Chim Acta. 2002;334:59–66.

    Article  CAS  Google Scholar 

  7. Sakai K, Tomita Y, Ue T, Goshima K, Ohminato M, Tsubomura T, Matsumoto K, Ohmura K, Kawakami K. Syntheses, antitumor activity, and molecular mechanics studies of cis-PtCl2(pzH)2 (pzH = pyrazole) and related complexes. Crystal structure of a novel Magnus-type double-salt [Pt(pzH)4][PtCl4][cis-PtCl2(pzH)2]2 involving two perpendicularly aligned 1D chains. Inorg Chim Acta. 2000;297:64–71.

    Article  CAS  Google Scholar 

  8. Lemaire G, Mnif W, Pascussi JM, Pillon A, Rabenoelina F, Fenet H, Gomez E, Casellas C, Nicolas JC, Cavaillès V, Duchesne MJ, Balaguer P. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. J Toxicol Sci. 2006;91:501–9.

    Article  CAS  Google Scholar 

  9. Vicentini CB, Mares D, Tartari A, Manfrini M, Forlani G. Synthesis of pyrazole derivatives and their evaluation as photosynthetic electron transport inhibitors. J Agric Food Chem. 2004;52:1898–906.

    Article  CAS  PubMed  Google Scholar 

  10. Singh N, Sangwan NK, Dhindsa KS. Synthesis and fungitoxic activity of 5-aryl-1-formyl-4,5-dihydro-3-(2-hydroxyphenyl)-1H-pyrazoles and their complexes. Pest Manag Sci. 2000;56:284–8.

    Article  CAS  Google Scholar 

  11. Barszcz B. Coordination properties of didentate N, O heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord Chem Rev. 2005;249:2259–76.

    Article  CAS  Google Scholar 

  12. Bol J. Synthetic models for dinuclear copper proteins, copper coordination compounds with macrocyclic pyrazolil ligands. Ph.D. Thesis, University Leiden, Leiden, Netherlands. 1997.

  13. Schore NE. Study guide and solutions manual for organic chemistry: structure and function. 5th ed. San Francisco: Freeman WH and Company; 2007 (in Serbian, 4th edition, Beograd, 2006, p. 429).

    Google Scholar 

  14. Bartyzel A. Synthesis, thermal behaviour and some properties of Cu(II) complexes with N, O-donor Schiff bases. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6563-2.

    Article  Google Scholar 

  15. de Oliveira EG, de Caland LB, de Oliveira AR, Machado PRL, Farias KJS, da Costa TR, Melo DMA, Cornélio AM, de Freitas Fernandes-Pedrosa M, da Silva-Júnior AA. Monitoring thermal, structural properties, methotrexate release and biological activity from biocompatible spray-dried microparticles. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6547-2.

    Article  Google Scholar 

  16. Mohammad KA, Rahim SA, Bakar MRA. Kinetics and nucleation mechanism of carbamazepine–saccharin co-crystals in ethanol solution. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6483-1.

    Article  Google Scholar 

  17. Mahmoud WH, Mohamed GG, Mohamedin SYA. Spectroscopic characterization, thermal, antimicrobial and molecular docking studies on nano-size mixed ligand complexes based on sudan III azodye and 1,10-phenanthroline. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6482-2.

    Article  Google Scholar 

  18. Jaćimović ŽK, Giester G, Kosović M, Bogdanović GA, Novaković SB, Leovac VM, Latinović N, Barta Holló B, Mészáros Szécsényi K. Pyrazole-type complexes with Ni(II) and Cu(II). Solvent exchange reactions in coordination compounds. J Therm Anal Calorim. 2017;127:1501–9.

    Article  CAS  Google Scholar 

  19. Stanković J, Lakić N, Ljubanović-Ralević I. Exercises in experimental statistics. University of Belgrade, Faculty of Agriculture. (1990), p. 242 (in Serbian).

  20. Rigaku Oxford Diffraction. CrysAlisPro Software system, version 1.171.38.46; 2015.

  21. Sheldrick GM. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv. 2015;71:3–8. https://doi.org/10.1107/S2053273314026370.

    Article  CAS  Google Scholar 

  22. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8. https://doi.org/10.1107/S2053229614024218.

    Article  CAS  Google Scholar 

  23. Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–4. https://doi.org/10.1107/S0021889811043202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spek AL. Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr. 2009;65:148–55. https://doi.org/10.1107/S090744490804362X.

    Article  CAS  Google Scholar 

  25. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70. https://doi.org/10.1107/S0021889807067908.

    Article  CAS  Google Scholar 

  26. Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849–54. https://doi.org/10.1107/S0021889812029111.

    Article  CAS  Google Scholar 

  27. Regiec A, Mastalarz H, Mastalarz A, Kochel A. Methylation of 4-nitro-3(5)-pyrazolecarboxylic acid. Tetrahedron Lett. 2009;50:2624–7. https://doi.org/10.1016/j.tetlet.2009.02.223.

    Article  CAS  Google Scholar 

  28. http://webbook.nist.gov/. Accessed 07 July 2017.

Download references

Acknowledgements

A Hungary-Montenegro Intergovernmental Science and Technology Cooperation Programme Grant is acknowledged (TÉT_15-1-2016-0036). I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an ÚNKP-17-4-IV-BME-188 Grant supported by the ÚNKP-17-4-IV New National Excellence Program of the Ministry of Human Capacities, Hungary. A K 124212 Grant and an NRDI Grant 123631 are acknowledged. The research within Project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Jaćimović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaćimović, Ž., Kosović, M., Kastratović, V. et al. Synthesis and characterization of copper, nickel, cobalt, zinc complexes with 4-nitro-3-pyrazolecarboxylic acid ligand. J Therm Anal Calorim 133, 813–821 (2018). https://doi.org/10.1007/s10973-018-7229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7229-4

Keywords

  • Coordination complexes
  • Pyrazole-type ligand
  • Thermal properties
  • TG–MS